1. 主页 > 范文大全 >

数学平行四边形及其基本性质教案(5篇)

作为一无名无私奉献的教育工作者,常常要写一份优秀的说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么写说课稿需要注意哪些问题呢?高考家长帮小编精心为小伙伴们带来了数学平行四边形及其基本性质教案(5篇),希望能够为小伙伴们的写作带来一些参考。

《平行四边形的性质》说课稿 篇一

一、说教材

四边形是日常生活中常见的一种图形。它与其他众多的几何图形一起构成了多姿多彩的世界。平行四边形作为最基本的几何图形,作为“空间与图形”领域中研究的主要对象,它在实际生产和生活中有着广泛的应用。

本节课的主要内容是平行四边形的概念和性质,平行四边形是一种特殊的四边形,特殊在两组对边分别平行。由于这个特殊性导致它具有一般四边形不具有的特殊性质:这些特殊的性质有助于我们解决许多实际生活中的问题,要利用这些特殊的性质的前题是判定这个四边形是个特殊的四边形,因此研究平行四边形的三个切入点是:定义、性质、判定。

1、教学目标

(一)知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2;

3、培养学生综合运用知识的能力

(二)过程与方法经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。

(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。

教学重难点

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.

难点:运用平行四边形的性质进行有关的论证和计算

二、说教法

本节课的内容特点:教学内容来源于生活,要尽量给学生提供一定的探索空间,让学生去发现结论,由学生自己去探索、去归纳总结,此外,学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形的研究提供了一定的认知基础,但对其本质属性理解并不深刻,在七年级的学习阶段学生已经掌握了证线段相等或角相等的一般办法,即证全等三角形。初步具有了用几何语言对命题进行推理证明的能力,这为推理平行四边形的性质奠定了基础。

根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。具体的教学方法:观察动手实践自主探索合作交流

三、说学法

教给学生正确科学的学习方法,培养良好的学习习惯,主要指导学生的学习方法有:

1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。

2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。

3、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。

四、说教学过程

根据本节课的特点我采用以下教学环节来完成教学目标:

教学过程

一、共同回顾:

1、什么样的图形叫四边形?

2、四边形的内角和是多少度?外角和呢?

3、四边形的对角线有多少条?

4、小学学习过哪些特殊的四边形?

二、新课

1、平行四边形的定义:

(1)定义:两组对边分别平行的四边形叫做平行四边形。

(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是平行四边形

(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。

(4)平行四边形的表示:用表示,如□ABCD

(5)对边:平行四边形相对的边称为对边,相对的角称为对角.

对边:AB与CD,AD与BC.对角:∠A和∠C,∠B和∠D.

2、探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

∵四边形ABCD是平行四边形

∴AB∥CD,AD∥BC,

∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°。

结论:平行四边形的对边平行,邻角互补

问:平行四边形的对边之间、对角之间还有什么数量关系?由此你能得到什么结论?

由∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A

你能得出平行四边形的对角之间有何关系?

性质1:平行四边形的对角相等

四边形ABCD中,

∵AB∥CD,AD∥BC,

∴∠A=∠C,∠B=∠D.

平行四边形的对边在位置上平行,在大小上有何关系?如何证明?

(学生猜想,讨论)

已知:如图,在四边形ABCD中,AB∥CD,AD∥BC.

求证:AB=DC,AD=BC

分析:证明边相等,常见的方法是证明两三角形全等,引导学生添加对角线辅助线

证明:连结AC

∵AB∥CD,AD∥BC

∴∠1=∠2,∠3=∠4

在△ABC和△CDA中,

∠1=∠2

AC=CA

∠3=∠4

∴△ABC≌△CDA

∴AB=DC,AD=BC

性质2:平行四边形的对边相等。

强调:连接对角线是一种常见的作辅助线的方法,将四边形的问题转化为三角形解决

三、新知运用

例1.如图:在平行四边形ABCD中,根据已知的边角大小,写出其他边角的大小。

设计意图:纯平行四边形性质的简单运用

例2.已知:如图,ABCD中,BE平分∠ABC交AD于点E.

(1)如果AE=2,求CD的长。

(2)如果∠AEB=40°,求∠C的度数。

设计意图:

(1)问综合运用角平分线的性质、平行线的知识、等腰三角形判定以及平行四边形的性质

(2)问综合三角形的内角和定理及平行四边形的性质

四、学生反馈练习

课件

五、课时小结

平行四边形的性质

(1)共性:具有一般四边形的性质

(2)特性:角平行四边形的对角相等,邻角互补

边平行四边形的对边相等,对边平行

平行四边形常见辅助线的添加:连接对角线转化三角形解决

六、课后作业

课本第78页练习第1、2题

《平行四边形的性质》说课稿 篇二

尊敬的各位评委、老师:

大家好!

我是牡丹江市第四中学数学教师—牛龙梅,今天,我说课的内容是选自人教版新课标实验教材《数学》八年级下第十九章第一节第二课时《平行四边形的性质》。我设计的说课共分四大环节。

一、设计理念

《数学课程标准》指出:新课程实施的基本点是促进学生全面、持续、和谐发展。而数学教学,则从学生已有的生活经验出发,创设生动有趣的问题情境,引导学生通过观察猜想、实验探究、合作交流,从而获取新知、形成技能、发展思维、学会学习。

二、教材分析与处理

平行四边形的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据。本课主要探究平行四边形对角线互相平分这一性质。我创设新颖的故事情境引入新课,来激发兴趣;对例题进行改编,融问题与故事于一体,来应用数学;设置动手操作活动,让学生在教师的指导下自主探究学习,从而感受数学。

因此,通过本节课的学习,力争达到以下教学目标

知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进行有关的论证和计算。

数学思考:经历观察、猜想、实验、验证等数学活动,认识平行四边形的性质,发展学生演绎推理能力和发散思维能力。

解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识。

情感态度:培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心。

根据以上教学目标和学生已有的认知基础,我确定本节课的教学重点:平行四边形的对角线互相平分这一性质的应用。

教学难点:对平行四边形的对角线互相平分这一性质的探究。

三、教学方法与手段

八年级学生几何学习正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,无论从知识结构,还是知识能力上都有所欠缺。因此我采用创设情境—大胆猜想—实验探究—反思评价的课堂活动模式,努力营造自主、合作、探究的学习氛围,结合多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验。

四、教学过程

(一)激趣设疑

[教师活动] 教师利用课件展示问题情境。

[学生活动] 此时,学生的积极性将被调动起来,努力试图寻找各种途径来求平行四边形的面积,但可能找不到合适的解决办法。

[教学内容] 教师乘机引出课题,明确学习任务。

[达成目标与调控措施] 此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣。

(二)深入探究

[教学内容] 请学生观察平行四边形的对角线,并猜想有什么性质。

[学生活动] 估计大多数学生能想到对角线平分,但可能忽视互相两字,也有可能会猜到对角线平分每组对角等错误结论。

[教师活动] 此时教师不做解答,但一一记录下学生的各种猜想。

[达成目标与调控措施] 形形色色的回答,能给他们不同的感受,在锻炼学生的观察及表达能力的同时,并为下一步实验探究指明了方向。

[教师活动] 教师将学生分成三组,拿出事先画好的平行四边形,按要求动手探究平行四边形的对角线有何性质。

平行四边形的性质 篇三

课题

16教学目标1、学生经历平行四边形的探究过程;2、能熟练的运用平行四边形的对边及对角的性质解决问题;3、培养学生探究归纳能力以及数形结合的思想方法。教学重点平行四边形的性质的形成与运用教学难点平行四边形的性质的综合应用教学方法引导探究式

教学手段多媒体教学过程

师生活动

设计说明一、引入新课二、新课探究1、              平行四边形的概念(作用:性质与判定);2、              特殊平行四边形间的关系;本节课,我们就来探究一下特殊的四边形---平行四边形的性质:问题:独立作出一个平行四边形,通过测量猜想自己的发现,试试进行严格的证明(明确已知与求证、思考如何将新知识转化为原有的知识)。学生讨论,教师巡视、倾听。(给足时间)教师引导学生结合图形小结:1、              平行四边形的对边相等;2、              平行四边形的对角相等;3、              平行四边形对角线互相平分。巩固基础知识;增强学生的探究能力;增强学生归纳能力。

教学过程

师生活动

设计说明

(对于学生回答正确的答案给予肯定,但教师明确教学重点)教师结合几何画板进行验证,由学生口答证明过程,教师适时板书已知与求证。符号语言:∵四边形abcd是平行四边形,∴ab=cd(平行四边形的对边相等)∠a=∠c(平行四边形的对角相等)本节课,我们主要结合前两个性质进行练习:学生独立完成后交流。例1、已知e、f是   abcd的对角线ac上的两点,且ae=cf,请写出图中所有的全等的三角形,并进行证明。分析:平行四边形的条件得到了平行的结

回顾:文字语言、图形语言、符号语言;

巩固性质,增强学生间的交流

教学过程

师生活动

论,从而可以得到许多等角,由公共边及对边为证明全等创造了必要的条件。学生口答思路,并独立完成证明过程,派一学生代表板书语言。教师引导学生小结:1、              看图知性;2、              证明线段、角相等的新的方法:平行四边形的对边、对角;思考:(1)若m∥n,ab与cd是夹在m、n间的平行线段,你能说出ab、cd的长度关系吗?(2)若ab、cd分别是a、d到n的距离,你能说出它们长度间的关系吗?教师引导学生口答结论及理由:推论1、夹在平行线间的平行线段相等;推论2、平行线间的距离处处相等。结合图形与同学交流我们学习过的“距离”。练习:p63—1、2、3

课堂小结1、              知识点:平行四边形的性质(文字语言、图形语言、符号语言);证明线段相等的新的方法:性质与推论;2、学习方法:大胆猜想、结合所学的知识进行证明;看见基本图形(平行四边形等)要思考基本性质;将平行四边形的问题转化为全等课后作业板书设计练习:课题:性质:例1、课后反思

平行四边形的性质 篇四

平行四边形的性质(2)

教学目标:

1、知识与技能:探索并掌握平行四边形对角线互相平分的性质,掌握平行线之间的距离的功概念。

2、过程与方法:

利用平行四边形的对边相等的性质,借助三角形全等的知识,通过合理推理,探索平行四边形的对角线互相平分的性质。

3、情感态度与价值观:

在探索平行四边形的性质活动中,培养学生的探究、合作精神,增强推理的能力。

教学重点:

史学史掌握平行四边形的对角线互相平分的性质。

教学难点:

平行四边形性质的综合运用。

教学互动设计:

一、回顾、思考

1、定义与性质——

2、利用定义与性质解题————

①、已知平行四边形的一角,可求                     ;

②、已知平行四边形的两邻边,可求                     ;

3、练一练

二、情境导课

如图 4—3,□ abcd的两条对角线ac、bd相交于点o。

(1)图中有哪些三角形是全等的?

(2)能设法验证你的结论吗?

想一想

由本题你又能得出平行四边形怎样的性质?

平行四边形的性质:

a

b

d

c

o

平行四边形的对角线互相平分。

三、利用定义、性质解题

1、例1 如图 ,四边形 abcd是平行四边形 ,

db^ ad,求 bc , cd及 ob的长。。

分析:(1)在□ abcd中,bc是        的对边;

cd是        的对边;

因为 ad、ab已知,

所以,利用平行四边形的性质“            ”可求出它们;

(2)点 o是         ,

利用平行四边形的性质“               ”可知ob是bd的一半。

(3)求 bd的长应摆在△         中用        定理来计算。

2、想一想

在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?(见p101图)

a

b

a

b

c

d

例2已知直线a∥b,过直线 a上任意两点a、 b分别向直线 b作垂线,

交直线 b于点c、点 d .

(1)线段ac、 bd所在的直线有怎样的位置关系 ?

(2)比较线段ac、 bd的长短  .

在例 2中,线段 ac的长是点a到直线 b的距离;同样,线段bd的长是点b到直线 b的距离,且 ac = bd.

如果两条直线平行 ,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。

平行线间的距离处处相等。

3、议一议

举出生活中的几个实例,反映“平行线之间的垂线段处处相等”的几何事实。

四、随堂练习

□ abcd的两条对角线相交 o, oa,ob, ab的长度分别为 3 厘米, 4厘米,  5厘米 , 求其他各边以及两条对角线的长度  .

a

b

d

c

o

a

b

d

c

o

a

b

d

c

o

五、作业

p102习题4.2       1、2、3

平行四边形的性质 篇五

(第一课时)公安县胡家场中学  刘小平 教学内容:北师大版义务教育课程标准实验教科书《数学》(八年级上册), 第四章  四边形性质探索  第一节。教学目标 :[知识目标]了解和掌握平行四边形的有关概念和性质。[能力目标]经历探索平行四边形有关概念和性质的过程,经历数学建模的过程,培养学生的动手能力、观察能力及推理能力。[情感目标]在探究的过程中发展学生的探究意识、创新精神和合作交流的习惯,培养学生用数学的意识和严谨的科学态度。教学重点:探究平行四边形的概念及对边相等、对角相等的性质。教学难点 :平行四边形性质的探究。教学用具:CAI课件、剪刀、学生用三角板、透明胶布等。教学过程 :一、创设情境播放投影:让学生走进央视栏目“开心辞典”节目现场,观察图形。[学生活动] 观看影片后抢答问题:你看到了哪些常见的几何图形?师:是的,各式各样的图案装点着我们的生活,使我们生活的这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?[学生活动] 小组合作交流,拼出下列图案:

师:同学们所拼的图形中,除了有我们刚学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。二、合作交流,探求新知1、问题(1):你能用同样的方法得到四边形的纸片吗?      [教师活动] 演示课件,将一张纸对折,剪下两个叠放的三角形纸板。[学生活动] 按照课件的演示,两个同学合作,叠、剪、拼。2、问题(2):你拼出了怎样的四边形?[学生活动] 小组交流合作,展示交流的结果。[教师活动] 选择具有代表性的图形:                                              (甲)            (乙)3、问题(3):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢? [学生活动] 认真观察、讨论、思考、推理。[教师活动] 鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义:两组对边分别平行的四边形叫着平行四边形。并指出:平行四边形不相邻的两个顶点连成的线段叫它的对角线。记作:    ABCD。     读作:平行四边形ABCD。师生共同讨论,得出如何用符号语言表示平行四边形的概念。4、做一做:先复制一个刚才拼的平行四边形,再绕其顶点旋转1800,然后平移,看能否与原平行四边形重合?你能得到什么结论。[学生活动] 动手操作,积极探究,得出:平行四边形的对边相等、平行,对角相等,邻角互补等。    [教师活动] 鼓励学生用多种方法探究。三、运用新知,反馈练习例、学校准备修建一个平行四边形的花坛,如图,要想使其一个角为450,那么其它三个角应是多少度?[学生活动] 作尝试性解答。[教师活动] 引导学生建立数学模型,并要求学生学好几何,设计更多更好的图案,美化我们的家园。                                                   A    30     C随堂练习:                                                       1、填空:如图,   ABCD中 ∠B=560,AB=­­­­(  ),CB=(   )              25  ∠D=(  ),  ∠C=(  ), ∠A=(  )。                   B           D2、在   ABCD的四条边中,哪些线段可以通过平移而相互得到?四、课堂小结  请同学们回忆一下,这节课有哪些收获?五、快乐套餐 1、P85  习题4.1  T1、2、3;2、请你以平行四边形为主设计一个图案,并制作成网页发布在互连网上;3、数学日记(小组交流,口头完成)

本节课我最感兴趣的部分本节课我解决的问题本节课我学会的方法本节课我感到疑惑的部分我还想知道