1. 主页 > 范文大全 >

五年级下册数学期末复习知识总结【优秀7篇】

多角度理解概念,奠定坚实的基础。善于联系实际应用,体现知识的实际价值。边学边思考,积极探索问题的本质和解决方法。高考家长帮为小伙伴们精心整理了五年级下册数学期末复习知识总结【优秀7篇】,希望能够对朋友们的写作有一些帮助。

五年级下册数学期末复习知识总结 篇一

① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③相邻的两个自然数是互质数。

④相邻的两个奇数互质。

⑤不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

①倍数关系:最大公因数就是较小数。

②互质关系:最大公因数就是1

③一般关系:从大到小看较小数的因数是否是较大数的因数。

(一)简单的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。

(二)求平均数用移多补少的方法:

平均数=总数量/总份数

总数量=平均数×总份数

总份数=总数量/平均数

五年级下册数学期末复习知识总结 篇二

1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

五年级下册数学期末复习知识总结 篇三

1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:

一个数的因数的个数是有限的`,其中最小的因数是1,1的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数偶数

奇数:不是2的倍数

偶数:是2的倍数(0也是偶数)

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1:只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数(一个合数写成几个质数相乘的形式)

5、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

6、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较小的数就是它们的公因数;

较大的数就是它们的最小公倍数。

如果两数互质时,那么1就是它们的公因数

它们的积就是它们的最小公倍数。

五年级下册数学期末复习知识总结 篇四

一、图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:

①对称点到对称轴的距离相等;

②对称点的连线与对称轴垂直;

③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:

①旋转中心;

②旋转方向;

③旋转角度。

旋转只改变物体的位置,不改变物体的形状、大小。

二、因数与倍数

1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

三、长方体和正方体

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12

4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2

正方体的表面积=棱长×棱长×6用字母表示:S=axax6

6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为100

7、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长×宽×高用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)

高=体积÷(长×宽)

正方体的体积=棱长×棱长×棱长用字母表示:V=a×a×a

9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000

10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml)1L=1000ml1L=1000立方厘米1ml=1立方厘米

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

四、分数的意义和性质

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b=(b≠0)。

4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。

5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:

①1和任何大于1的自然数互质。

②2和任何奇数都是互质数。

③相邻的两个自然数是互质数。

④相邻的两个奇数互质。

⑤不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

9、最简分数:分子和分母只有公因数1的分数叫做最简分数。

10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。

12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

13、特殊情况下的最大公因数和最小公倍数:

①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。

②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。

14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。

15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。

五年级下册数学期末复习知识总结 篇五

1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分母:表示平均分的份数。分子:表示取出的份数。

3、分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

4、真分数:分子小于分母的分数叫做真分数。真分数小于1。

5、假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

6、带分数:由整数和真分数组成的分数叫做带分数。

7、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

8、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

9、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

10、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

11、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3

12、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。

13、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:

(1)相邻的自然数互质;

(2)相邻的奇数都是互质数;

(3)1和任何数互质;

(4)两个不同的质数互质

(5)2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。

14、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

15、求公因数,最小公倍数的方法关系公因数最小公倍数倍数关系

16、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

17、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

18、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

19、如何比较分数的大小:分母相同时,分子大的分数大;分子相同时,分母小的分数大;分子分母都不同时,通分再比。

20、分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

21、分数的意义两种解释:

①把单位“1”平均〈WWW.SHUBAOC.COM〉分成4份,表示这样的3份。

②把3平均分成4份,表示这样的1份。

数学整数加法知识点

(1)把两个数合并成一个数的运算叫做加法。

(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

(3)加数+加数=和,一个加数=和—另一个加数

数学世界最大的数和最小的数

最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

没有最小的数字,但有最小的自然数,就是“0”。

五年级下册数学期末复习知识总结 篇六

一个加数=和-另一个加数减数=被减数-差被减数=减数+差

一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数

注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

五年级下册数学知识点6

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。

4、分数与除法

A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5

5、真分数和假分数、带分数

真分数:分子比分母小的分数叫真分数。真分数<>

假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1

带分数:带分数由整数和真分数组成的分数。带分数>1.

真分数<1≤假分数

真分数<1<带分数

6、假分数与整数、带分数的互化

(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:

(2)整数化为假分数,用整数乘以分母得分子如:

(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

(4)1等于任何分子和分母相同的分数。如:

7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/5

10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4可以化成8/20和5/20

11、分数和小数的互化

(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……

如:

0.3=3/10 0.03=3/100 0.003=3/1000

(2)分数化为小数:

方法一:把分数化为分母是10、100、1000……

如:3/10=0.3 3/5=6/10=0.6

1/4=25/100=0.25

方法二:用分子÷分母

如:3/4=3÷4=0.75

(3)带分数化为小数:

先把整数后的分数化为小数,再加上整数

12、比分数的大小:

分母相同,分子大,分数就大;

分子相同,分母小,分数才大。

分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

1/2=0.5 1/4=0.25 3/4=0.75

1/5=0.2 2/5=0.4 3/5=0.6

4/5=0.8

1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04

五年级下册数学期末复习知识总结 篇七

1、小数乘法的计算法则:

先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

2、计算中的发现:

①一个数(0除外)乘小于1的数,积比原来的数小。如:3.7×0.2=0.74

②一个数(0除外)乘大于1的数,积比原来的数大。如:3.7×2=7.4

③一个数(0除外)乘于1,积和原来的数相等。如:3.5×1=3.5

3、小数乘法的验算方法:

①把因数的位置交换,再乘一遍。(通用)

②积÷一个因数=另一个因数。

4、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)

①一个算式里,如果含有同一级运算,要从左往右依次计算。

②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+?)

③一个算式里,如果有括号,先算括号里面的,后算括号外面的。

5、积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。

6、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

上文是五年级数学下册知识点梳理,希望文章对您有所帮助!