每个好的教师都需要一个好的教案,下面是高考家长帮为您整理的数列教案通用6篇,希望能够给朋友们的写作带来一定的启发。
数列教案 篇一
1.掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;
(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议
教材分析
(1)知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。
(2)重点、难点分析
教学重点、难点是等比数列前项和公式的推导与应用。公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列、等比数列的数列求和问题。
教学设计示例
课题:等比数列前项和的公式
教学目标
(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。
教学重点,难点
教学重点是公式的推导及运用,难点是公式推导的思路。
教学用具
幻灯片,课件,电脑。
教学方法
引导发现法。
教学过程
一、新课引入:
(问题见教材第129页)提出问题:(幻灯片)
二、新课讲解:
记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消。
(板书)即,①
,②
②-①得即。
由此对于一般的等比数列,其前项和,如何化简?
(板书)等比数列前项和公式
仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即
(板书)③两端同乘以,得
④,
③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)
当时,由③可得(不必导出④,但当时设想不到)
当时,由⑤得。
于是
反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列。
(板书)例题:求和:.
设,其中为等差数列,为等比数列,公比为,利用错位相减法求和。
解:,
两端同乘以,得
,
两式相减得
于是。
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题。
公式其它应用问题注意对公比的分类讨论即可。
三、小结:
1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;
数列教案 篇二
一、编写导学案首先要紧紧围绕着教材
在编写前教师一定要经过大量的阅读和准备,不单是写写教案那么简单,自己还必须独立深入认真钻研书和教参。第一次备课不参照任何名家教案或参考书,只看教科书,想一想,看着例题和试一试,练一练,自己想怎么设计课。第二次对准自己备的课参照别人的备课,看看哪些是别人想到而自己没有思考到的,想想别人为什么要这样设计,取别人的智慧补充自己的教学设计。第三次交给学科组集体讨论定稿。第四次在上课后,根据课堂的实际情况写出课后反思,调整自己的教学策略,敲定教学细节处理。这样的备课能促进我们独立思考,不断提高能力。而不是像有的导学案,基本上就是将几个简单题目罗列起来,没有导学案使用说明,没有方法指导,没有知识分层,没有拓展探究,效果可想而知。如四年级下册《确定位置》导学案编写片段1:
学习过程:
自学课本98页例1
1.指一指:在座位图上分别指出列和行,数一数一共有(_______)列和(_______)行。
2.涂一涂:(1)在圆圈图上,找出第一列,并用蓝笔涂实;
(2)再找出第1行,用红笔涂实;
(3)请按顺序再数一数列和行。
通过指一指,先数一数共有列、行;再涂一涂第1列,第一行;最后按顺序数一数列和行。设计要点:(1)方法指导:指一指、涂一涂、按顺序数一数;(2)知识层层深入:①数一共的列和行;②按顺序数列和行。这样的设计既有方法指导,又有知识分层,效果可想而知。
二、编写导学案要以学生为主题
对同一教材的内容,师生的年龄、认知水平和生活经验都有巨大差异,必然对教材内容的实际解读相差巨大。因此备课时,教师要认真研读教材、准确理解编者意图,不但要站在教师的角度想全面,还要设身处地站在中学生的角度读教材,并提出疑问。站在学生认知的角度,站在文本整体的高度,体察学生阅读中可能遇到的问题和需要具备的方法,分析应该落实的知识、训练重点,找到三维目标的交汇点,在心里和学生先期对话,彻底吃透教材,能够对教材内容举一反三,变式练习层层递进。然后再统筹安排在教学中学生想学什么?学生学什么、怎样学?片段2:
3.小军的位置在第_______列,第_______行。用数对表示是(_______,_______)。
小组交流。
本课是通过统一观察角度、按同样的顺序数,确定位置。但从学生的角度,即便不统一,也能说得清楚,只是复杂点唆点。为什么课本里要安排这课呢?在导学案片段2例就深刻体现出了这一点。统一的观察角度、按同样的顺序数,确定在第4列,第3行。清楚、不唆。更深一层次,用数对表示是(4,3),更显简洁,准确。既有了知识分层,又拓展了探究,更体现了数学的简洁性、准确性。
三、编写导学案要体现数学思想
教材的编排有两条贯穿始终的主线:一条是明线,即知识的联系;另一条是暗线,即掩藏在知识背后的数学思想方法。如:在教学《确定位置》时,明线是:用数对表示位置。暗线是:数学的严谨、准确、简洁性。紧扣两条线索,帮助学生统一确定位置的方法,体会数学的准确、简洁之美。学生经历了认知的全过程,就会形成良好的认知结构。仔细考虑课堂教学中的细节问题,对于课堂上学生可能出现的认知偏差要有充分准备。
四、编写数学“导学案”的模块
不同的课型导学案所包含的基本模块和要求也不太一样,总的来说,大致包含如下一些环节。
1.学习目标。它是整篇导学案的灵魂,其他环节均为它服务。它的设计应包含三层目标:知识目标、能力目标、情感目标,目标要简洁、清晰、准确、全面、具体。最重要的是从学生的角度拟定。
2.学习过程。各种课型有所不同,但问题(知识模块)设计要遵循知识问题化、问题层次化的原则。教师给予学生学习每节课具体的、有针对性的、方法上的指导。引导学生回顾与本节有关的、有帮助的旧知,以便更好地理解和掌握新知,还要根据所学部分的核心内容和知识主线设计2~3个有思维价值的问题。
3.课内练习。对所学知识的进一步升华和深化,要求较高,可以培养学生运用知识解决问题的能力。也要有当堂检测,检验学生的学习效果和导学案的实施效果,总结经验,吸取教训;当堂检测可另附页。题量控制在3~4个,时间为5~10分钟。
4.学生小结。对本节所学知识、方法、规律的总结,可在教师的启发、引导下进行。
数列教案 篇三
一、利用数列知识的生活性,创设高中生自主探究的教学氛围
利用数列知识与现实的紧密联系性,设置现实生活情境,让学生在适宜的生活情境中,自主探究能动情感得到激发,主动开展探究数列知识要点和问题案例解答过程。
如在“等差数列的前n项和”教学活动中,教师在整节课教学活动中,准备采用自主探究式教学策略,为保证该教学策略的顺利实施,教师在教学伊始,就奠定情感“基调”,在认真研析该节课知识内涵的基础上,创设了生活链接“在我国古代,数字9是数字之极,代表着尊贵之意,所以在中国古代皇家建筑中包含有许多与9有关的设计。例如,北京天坛圜丘的表面就由扇形的石板铺就而成,最高一层的重心是一块天心石,围绕它的第一圈是9块石板,从第二圈开始,每一圈比前一圈多9块,一共有9圈,请问第9圈有多少块石板?”学生在教师创设的生活性情境案例中,带着情感、带着问题、带着疑惑,主动探究等差数列的前n项和公式的推导、性质等重点、难点内容,保证了自主探究活动有序开展的“情感性”。
二、找寻数列问题的规律性,传授高中生自主探究的学习策略
在讲解“等差数列的通项公式与递推公式的联系”知识点内容时,教师在运用自主探究式教学策略时,先向学生设置问题案例“数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N*),求(1)数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn;(3)设bn=11n(12-an)(n∈N*),Tn=b1+b2+ …+bn(n∈N*),是否存在最大整数m,使得对于任意n∈N*,均有Tn>m132成立?若存在,求出m的值,若不存在,请说明理由。”让学生进行自主探究问题活动,学生在探知问题活动中,通过对问题内容及条件的思考分析,认识到该问题案例是考查综合应用所学的等差数列知识进行问题解答的能力。教师通过学生的探析活动,发现,学生解答该问题的难点主要有两个,一个是如何去掉Sn中的绝对值符号,另一个是该问题中的第三问。此时,教师引导学生可以采用先假设存在,然后作出正确的推理论证。学生结合教师的指点,进行该问题的解答活动。最后,教师根据学生的解题过程,与学生一起进行解题策略的总结,指出解答等差数列的通项公式与递推公式的联系方面的问题案例时,主要是利用等差数列的定义以及前n项和公式解题,解题时要注意数列中从哪一项开始为负数,再去绝对值符号时加负号,在求Tn时利用了数列求和的裂项法把11n(n+1)拆开,解题时要注意一定的技巧性。在上述过程中,教师在学生自主探究解析问题中,通过适当引导,使学生逐步掌握进行问题解答的策略方法,从而为深入开展自主探究活动打下了方法基础。
三、挖掘数列案例的思想性,提升高中生自主探究的数学思想
问题设p,q为实数,α,β是方程x2-px+q=0的两个实根,数列{xn}满足x1=p,x2=p2-q,xn=pxn-1-qxn-2(n=3,4,…).(1)证明:α+β=p,αβ=q;(2)求数列{xn}的通项公式。
解析(1)由求根公式,不妨设α
α=p-p2-4q12,β=p+p2-4q12
所以α+β=p-p2-4q12+p+p2-4q12=p
(2)当n≥3时,设xn-sxn-1=t(xn-1-sxn-2),则xn=(s+t)xn-1-stxn-2,由xn=pxn-1-qxn-2得s+t=p,
st=q。消去t,得s2-ps+q=0,所以s是方程x2-px+q=0的根,由题意可知,s1=α,s2=β。
①当α≠β时,此时方程组s+t=p,
st=q的解记为s1=α,
t1=β或s2=β,
t2=α。所以xn-αxn-1=β(xn-1-αxn-2),xn-βxn-1=α(xn-1-βxn-2),即{xn-t1xn-1}、{xn-t2xn-1}分别是公比为s1=α,s2=β的等比数列,由等比数列性质可得xn-αxn-1=(x2-αx1)βn-2,xn-βxn-1=(x2-βx1)αn-2,两式相减,得(β-α)xn-1=(x2-αx1)βn-2-(x2-βx1)αn-2。因为x2=p2-q,x1=p,所以x2=α2+β2+αβ,x1=α+β, 所以(x2-αx1)βn-2=β2βn-2=βn,(x2-βx1)αn-2=α2αn-2=αn, 所以(β-α)xn-1=βn-αn,即xn-1=βn-αn1β-α,xn=βn+1-αn+11β-α。
②当α=β时,即方程x2=px+q=0有重根,则p2-4q=0,即(s+t)2-4st=0,得(s-t)2=0,所以s=t。不妨设s=t=α,由①可知xn-αxn-1=(x2-αx1)βn-2。因为α=β,所以xn-αxn-1=(x2-αx1)αn-2=αn,即xn=αxn-1+αn。等式两边同时除以αn,得xn1αn=xn-11αn-1+1,即xn1αn-xn-11αn-1=1,所以数列{xn1αn}是以1为公差的等差数列,所以xn1αn=x11α+(n-1)×1=2α1α+n-1=n+1,所以xn=nαn+αn。
综上所述,xn=βn+1-αn+11β-α
nαn+αn(α≠β),
数列教案 篇四
1.教材分析
本人仔细研究教材,深入挖掘编者意图,认为本节课的教材主要由以下几部分组成:
从小精灵聪聪提出的问题:"小东家厨房装修得真漂亮,你能找出这些图案的规律吗?"入手,并呈现出小东家厨房墙面与地面瓷砖的图案,从生活中熟悉的情境出发,符合二年级学生的心理需求,目的在于调动学生的学习积极性,让学生观察这两个图案里面有什么规律?这为例1的教学埋下了伏笔。
例1把数学从生活中勾画出来,用图形代替图案,意在引导学生用生活经验解决数学问题,学会从数学的角度思考生活中的问题。
"做一做"的目的主要有:及时反馈对例1的掌握情况;引导学生学会逆向思维,直接从前面的"往后移"转变为"往前移",让学生学会举一反三这一数学方法。
④从小精灵明明的问题:"你能在手帕上设计出有规律的图案吗?"结束,目的在于引导学生发现数学美,并把数学运用于我们的日常生活中来。真正体现了新课标提出的数学从生活中来,到生活中去的教育理念。
2.学情分析
学生在一年级下册已经掌握一些简单的排列规律,如:
( )( )( )等等。而本节课的规律教学是在原来的基础上提高一定的难度,因为学生有前面的基础作为铺垫,因此本节课的教学,只要能抓住教学的重难点,并进排有效的引导,我相信名师们常说的:"没有教不会的学生"将不再是一件难事。
二、教学目标
1.使学生发现并掌握图形的排列规律。
2.培养学生观察 操作 归纳 推理的能力。
3.培养学生发现生活中数学美的审美意识,并学会用数学去创造生活中的美。
4.培养学生学习数学的兴趣,从数学的角度思考生活中的问题。
5.培养学生养成排列整齐的生活习惯。
教学重点:
掌握图形的排列规律。
教学难点:
发现图形的排列规律。
三、准备材料
教具:小黑板 墙面图案卡片 地面图案卡片 例1卡片
学具:墙面图案延伸卡 地面图案延伸卡 一张白纸 彩色笔
四、教学流程
(一)创设情境 回顾旧知—— 《5分钟》
师:上课之前,想请同学们帮老师一个忙,不知道大家是否愿意?(愿意)老师为自己家厨房的装修设定了几套方案,不知道该选择哪一套比较漂亮,想听听同学们建议。
师出示以下两张图,问:你更喜欢哪一种方案?为什么?
生发表观点:喜欢第一种,因为第一种排列有规律;第二种比较乱。
【设计意图:通过创设帮老师解决问题的学习情境,充分调动学生踊跃参与的学习热情,培养学生排列整齐的生活习惯。因为学生在一年级下册已初步掌握了简单的排列规律,故设计此方案,符合学生的实际需求,且为接下来的新课教学奠定基础。】
(二)合作学习 主动探究 ——《20分钟》
(1)墙面方案 ——《2分钟》
1、师出示第三个方案
问:这个方案,你们觉得可以吗?说说你的理由?
生1:我认为不可以,因为它们排列没有规律。
生2:我认为可以,因为它们的排列有规律。第一排的 排在第1个;第二排的 排在第4个;第三排的 又排在第1个;第四排的 又排在第4个,这也是有规律的。
师:你们能否按照这个规律,一起设计第5排、第6排的排列方案吗?
生按照这个规律继续完成第5、6……排。
2、师出示第四个方案——《5分钟》
问:第四个方案,你认为可以吗?说说你的观点。
生1:第一排的第1个,调到第二排的第4个,其余三个依次往前移;第二排的第1个,调到第三排的第4个,其余三个依次往前移;第三排的第1个调到第四排的第4个,其余三个依次往前移。依次类推,按照这个规律继续往下排列。
其它学生尝试着叙述这个过程:每一排的第1个移到下一排的第4个,其余三个不改变顺序依次往前移。
生按照这个规律依次把第5排、第6排补充完整。
3、合作讨论:第五个方案——《5分钟》
问:你认为第五个方案,合适吗?说说你的理由!
生:每一排的第1个移到下一排的第4个,其余三个不改变顺序依次往前移。
生补充第5排、第6排…………
小结:经过同学们的帮忙,老师最后决定采纳最后一种方案,谢谢大家的帮忙。
【设计意图:从“扶”到“放”,依次出示第三、四、五方案,由易到难,由浅入深,层层递进,符合学生“跳一跳,够得着”的教育理念。】
(2)地面图案规律——《3分钟》
师:谢谢同学们帮老师出谋献策,让老师选中了一套自己喜欢的墙面设计方案,那接下来地面的设计,你们又是否愿意帮忙呢?
师出示地面砖的排列,让学生继续补充第5、6、7、8、排。
师:5 6 7 8排的图案刚好是把1至4排的图案再重复一遍而已。
问:9 10 11 12的图案又会是怎样呢?为什么会刚好是每4排循环一次呢? (因为每一排都是由4种颜色组成,每一种颜色轮流排一次,刚好需要4次,所以每4次刚好循环一遍。)
(3)例1——《5分钟》
让学生自排补充完整,教师对此题进排延伸、拓展。
【设计意图:学生以上方案的探讨中,已经掌握了图形的排列规律。因此,这题主要放手让学生自己去尝试,一方面可以检查学生的掌握情况,另一方面也温故而知新。5到12排的延伸,让学生明白了小规律中隐藏着一个大的规律,无形当中对学生进行“山外有山 楼外有楼”的学习态度。】
(三)反复实践 巩固规律——《5分钟》
“做一做”学生做在书上,一生上台板演。
注意指出:前面的方案是从前往后移,而这题则是从后往前移。
【设计意图:培养学生迁移的学习方法,认真审题的学习习惯。】
(四)动手实践 创造规律——《5分钟》
(1)创造规律
师问:你们能在手帕上设计出有规律的图案吗?
师挑选几个代表上台展示作品。
小结:规律其实就在我们的身边。
【设计意图:培养学生发现和欣赏数学美的意识,知道数学来源于生活,用之于生活。】
(2)练十三1 2题
(五)课堂总结 梳理知识——《5分钟》
(1)揭示课题:排列规律
(2)谈谈本节课的收获与体会。
(六)板书设计
排列规律
墙面图案 地面图案
数列教案 篇五
教科书118页例6及“做一做”。练十九1~5题。
一、素质教育目标
(一)知识教学点
1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。
2.指导学生设末知数,表示两个数之间的关系。
3.训练学生分析这类应用题的数量关系。
(二)能力训练点
1.会解答所列方程形如axbx=c的应用题。
2.会正确找出应用题的等量关系。
3.会进行检验。
(三)德育渗透点
1.培养学生认真学习的好习惯。
2.渗透不同事物之间既有联系又有区别的观点。
(四)美育渗透点
通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。
二、学法指导
1.引导学生分析题意,找出等量关系。
2.指导学生试算,利用已有经验进行体验。
三、教学重点
用方程解答“和倍”“差倍”应用题的方法。
四、教学难点
分析应用题等量关系,设末知数。
教学过程设计
(一)复习准备
1.列方程并求出方程的解。
(1)x的5倍与x的3倍的和是40;
(2)某数的4倍比它的6倍少24。
2.根据下面的条件,找出数量间的相等关系。
(1)大米与面粉重量的和是1000千克;(大米的重量+面粉的重量=重量和。)
(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)
(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)
3.用含有字母的式子表示。
(1)学校科技组有女生x人,男生人数是女生的3倍,男生有()人,男生女生一共有()人,男生比女生多()人;
(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。
4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?
(1)学生审题画图,独立解答。
(2)学生解答后讲解:
解法1:
列式:45+45×3=45+135=180(棵)
解法2:
列式:45×(3+1)=45×4=180(棵)
答:两种树一共有180棵。
(二)学习新课
1.改变上题的条件和问题,使之成为例6。
果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)学生审题,将复习题的图改为例6。
(2)思考:
①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)
②怎样设未知数呢?
如果设桃树有x棵,那么杏树就有3x棵;
比较哪种设法比较简便?为什么?
易解。
将线段图中的问号改为x或3x。
(3)根据哪个条件找数量间的相等关系?
根据桃树和杏树一共有180棵,找等量关系。
(4)列方程,解方程,
解:设桃树有x棵。或:
(5)检验,答题。
教师:检验时,可以把得数代入题目,看是否符合已知条件。
学生进行检验。
①看桃树和杏树一共的棵数是否是180棵,
45+135=180(棵)
②看杏树棵数是否是桃树的3倍,
135÷45=3
答:桃树有45棵,杏树有135棵。
2.试做:
果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)思考:
此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)
数量关系为:
(2)试做:
检验:
①135-45=90;
②135÷45=3。
答:桃树有45棵,杏树有135棵。
3.小结:
思考讨论:
(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)
(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)
(三)巩固反馈
1.根据条件,设未知数。
(1)快车的速度是慢车的2倍。
设()为x千米,那么()为2x千米;
(2)男生人数是女生的1.2倍。
设()为x人,那么()为1.2x人;
(3)大米的重量是面粉的3.5倍。
设()为x千克,那么()为3.5x千克;
(4)父亲的年龄是女儿的4倍。
设女儿的年龄为x岁,那么父亲的年龄为()岁;
(5)甲桶油的重量是乙桶的1.5倍,设乙桶油的重量为()千克,那么甲桶油的重量为()千克。
2.独立解答P118“做一做”,P119:4。
解答后讲解数量间的相等关系。
做一做:
根据“四年级、五年级共有学生330人”,得:
四年级人数+五年级人数=四、五年级人数和
1.2xx330
P119:4。
根据“如果再往乙袋里装5千克大米,两袋就一样重了。”可知乙袋比甲袋少5千克,得:
甲袋重量-乙袋重量=乙袋比甲袋少的重量
1.2xx5
3.将上题中的“如果再往乙袋里装5千克大米”改为“甲袋给乙袋5千克”应怎样解答?
画图理解:甲袋比乙袋多多少?
从图上看出甲袋比乙袋多5×2=10(千克)
根据:甲袋重量-乙袋重量=甲袋比乙袋多的重量
1.2xx10
列方程:1.2x-x=10。
4.课后作业:P119:1,2,3。
课堂教学设计说明
列方程解含有两个未知数的应用题,学生第一次接触,因此设哪个未知数为x是本节课的难点。为了分散这一难点,在复习中采取填空的形式,引导学生根据倍数关系设未知数。在新授中,通过对两种设法的比较、分析,得出设一倍数为x比较简便。在练习中又设计了专项练习,学生在思考、讨论中,透彻地理解并掌握了这一规律。
例6学习了列方程解和倍应用题,改变其中一个条件,变成差倍应用题,着重引导学生比较两题的异同。讨论解答方法哪些地方相同,哪些地方不同,既可提高教学效率,又能将学生的注意力引导到比较两题的异同上面来,有助于形成两种解法的逻辑关系。
数列教案 篇六
在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。
【教学背景】
所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。
【教学设计】
一、教材分析
1.教学内容
“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2.地位与作用
本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。
二、目标分析
1.教学目标
(1)掌握等差数列的前n项和公式及推导过程。
(2)会简单运用等差数列的前n项和公式。
(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
2.教学重点、难点
(1)重点:等差数列前n项和公式的推导和应用。
(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
三、教学模式与教法、学法
本课采用“探究―发现”教学模式。
教师的教法:突出活动的组织设计与方法的引导。
学生的学法:突出探究、发现与交流。
四、教学活动设计
1.新课引入
创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?
问题就是(板书)“1+2+3+4+…+100=?”
设计意图:利用实际,生活引入新课,形象直观。
2.探索公式
介绍数学家高斯,然后提出问题:高斯是如何快速计算1+2+3+4+…+100?设等差数列{an}前n项和为Sn,则:Sn=a1+a2+…+an-1 +an
问题1:
老师:利用高斯算法如何求等差数列的前n项和公式?
学生:1+100=101,2+99=101,…50+51=101,所以原式=50 (1+101)=5050
学生:将首末两项配对,第二项与倒数第二项配对,以此类推,每一对的和都相等,并且都等于(a1+an)
学生:不一定,需要对n取值的奇偶进行讨论。
当n为偶数时刚好配对成功。
通过对n取值的讨论,得到了前n项和求和公式。但是对n讨论麻烦了,能否有更好的方法求前n项和公式呢?
问题2:如何用倒置的思想求等差数列前n项和呢?
Sn=a1+a2+…+an-1+an
3.例题选讲
例1:计算
(1)1+2+3+…+n (2)1+3+5+…+(2n-1)
(3)2+4+6+…+2n (4)1-2+3-4+5-6+…+(2n-1)-2n
设计意图:学生自己阅读教材,体会教材的解法是如何运用求和公式的。
……
4.课堂总结
本环节由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明。
(1)回顾从特殊到一般,一般到特殊的研究方法。
(2)体会等差数列的基本元表示方法,倒序相加的算法,及数形结合的数学思想。
(3)掌握等差数列的两个求和公式及简单应用。
5.课后作业
教材44页:1、2、5、6