1. 主页 > 范文大全 >

数学五年级上册《可能性》教学设计优秀7篇

在教学工作者实际的教学活动中,很有必要精心设计一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。我们该怎么去写教学设计呢?下面是漂亮的高考家长帮网小编为您带来的数学五年级上册《可能性》教学设计优秀7篇,希望能够给大家的写作带来一些的启发。

《可能性》教学设计 篇一

教学目标:

1、通过“猜测——试验——分析试验数据”,经历事件发生可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。

2、培养学生的猜测、实验和观察能力。

3、在活动交流中发展合作学习的意识和能力。

教学重点:

体验事件发生可能性的大小。

教学难点:

通过活动能知道事件发生的可能性是有大有小的。

教学准备:

课件、棋子(两种颜色)、小球(三种颜色)、大盒子、反馈练习、统计表格。

教学过程:

课前谈话:实物投影展示转盘,让学生亲自体验一下转盘得奖活动,初步感知事件发生的可能性大小。

一、激发兴趣,导入新知

看来像转盘的奖、抽奖等等许多事情发生的结果是不确定的,有可能发生,也可能不发生,这节课我们进一步研究可能性问题。(板书:可能性)

二、自主探索,获取新知

1、创设情景,激发探究欲望

师:通过刚才的转盘得奖活动,你有什么想法?

生:获得一等奖的可能性小,获得纪念奖的可能性大。

师:为什么呢?

生:因为一等奖占的面积大,纪念奖占的面积小。

师:是这样吗?下面通过大家的试验,验证一下是不是有这种规律存在。

2、设计摸棋子抽奖活动

师:我们共同设计摸棋子抽奖活动。袋子里只放入黑白两种颜色的棋子共10枚,其中黑棋子表示一等奖,白棋子表示纪念奖,根据你的生活经验,你打算怎样设计这次摸奖活动?

师:自己想一想,同桌两个人相互说一说。

3、汇报自己组的想法

生:黑棋子放1个,白棋子放9个,让中一等奖的人少一些。

生:黑棋子放3个,白棋子放7个,让中一等奖的人多一些。

师:按两人一组的想法,把棋子又轻又快的放入袋中。

4、小组合作实验

明确要求:1、每人各摸10次,一人摸另一人记录,不能看,摸完一次后放回去,要一要再摸。

2、把每次摸得的结果用画“正”字的方法进行统计并把结果填入表中,同时思考你发现了什么?

5、展示、汇报、交流

(1) 把记录单按照黑棋子的多少依次贴在黑板上。

(2) 师:黑棋子少,摸到黑棋子的可能性就小,白棋子多,摸到白棋子的可能性就大。

(3) 解决反例问题

师:为什么黑棋子少,摸出黑棋子的次数却多呢?说一说这是这么回事?

生再次实验(黑棋子1个白棋子9个或黑棋子2个白棋子8个)

师:通过我们的再次实验,看来黑棋子少,摸到的可能性就小。白棋子多,摸到的可能性就大。

6、 师:可能性大小于什么有关呢?

生:可能性大小与数量有关。、

师:与在总数量中所占数量的多少有关。在总数中占的数量越多,摸到的可能性就越大,占的数量越小,莫大的可能性就越小。

7、师:横着观察一下,你有什么新的发现?

生:随着黑棋子数量的逐渐增加,摸出黑棋子的可能性逐渐增大了。

8、师:放5个黑棋子和5个白棋子会有什么样的结果呢?

生:有的摸出的黑棋子的多,也有的摸出的白棋子的多。

师:如果继续摸下去会怎样呢?猜一猜。

生:摸到的黑白棋子的可能性是差不多的。

师:正如你们的猜想,在很久以前科学家们就做了此项实验(介绍贝努力实验)

9、小结

通过刚才我们摸棋子的实验发现,袋中放几种颜色的棋子,就可能摸出几种颜色的棋子,但可能性的大小是有变化的。

三、拓展联系,深化新知

1、(出示一个盒子,上面标有共14个球,白球8个,黄球4个红球2个)。

师:如果老师只摸出1个球,可能是什么颜色的球,为什么?

生:因为盒子中只装有3种颜色的球,所以可能是白球,也可能是黄球或者是红球。

师:摸出什么颜色球的可能性大?什么颜色球的可能性小?

2、数学书第85页1题:连一连。

3、通过游戏,再次体验可能性大小。

8个分别标有1、2、3、4、5、6、7、8的球。

要求:1、甲乙二人,轮流从口袋中摸球,每次摸出一球。

2、摸出球的号码大于4,甲得到1分。

摸出球的号码小于3,乙得到1分。

3、甲乙各摸10次后,得分高的获胜。

问:如果你来参加这个游戏,你将怎样选择?

(1)当甲 (2)当乙 (3)甲或乙都可以。

4、师小结:这节课过得愉快吗?

《可能性》教学设计 篇二

教学内容:义务教育课程标准实验教科书数学六年级上册94-96页例1、例2

教学目标:

1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。

2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。

3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学重点:

理解并掌握用分数表示可能性的大小。

教学难点:

在认识事件发生的不确定现象中感受统计概率的数学思想。

教学准备:演示课件、乒乓球、布袋、棋子、纸盒等。

教学过程:

一、情境与问题

1、课前谈话,狄青百钱定军心

2、问题引入

师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)

师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)

师:可能性有大有小。(板书:可能性的大小)

二、探究与交流

1、教学例1

出示例1场景图

问:裁判在做什么?(猜球。场景再现)

问:用猜左右的方法决定由谁先发球公平吗?为什么?

学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。

指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。

师:你是怎样理解这里的1/2?

2、同步体验

教师拿出一个口袋,向里面放入一个黄球,问:从中任意摸出一个球,摸到黄球的可能性是几分之几?

学生提问:其中有几个球?其中几个黄球?

动手摸一摸,边摸边问:这时可以得出结论了吗?

(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)

试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?

学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,

摸到黄球的可能性又是几分之几?

问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。

问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?

小结:放5个球,其中黄球1个。

三、迁移与提升

1、教学例2

出示例2中的实物图(逐一出示,学生说出各是什么牌)

问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?

讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1/6。

一共有6张牌,摸到每张牌的可能性都是1/6。

问:你还想到什么问题?

小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)

汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?

(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。

汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?

(对比练习:红桃A红桃2红桃3黑桃A黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)

2、同步练习

看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?

(自由说一说)

3、阅读拓展

阅读教材94、95页,还有什么问题吗?

出示“你知道吗?”

四、实践和应用

1、成语里的数学(用分数表示成语里某个事件的可能性的大小)

十拿九稳百发百中智者千虑必有一失

2、操作和推测

口袋里装着白色和黑色的棋子共4个。如果不打开袋子看,你们有办法知道哪种颜色的棋子有几个吗?

根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?

组织操作,搜集摸球结果,汇总发现。

指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。

可能性的大小离不开统计。

练习:如果指针转动80次,可能有多少次停在红色区域,可能有多少次停在黄色或蓝色区域?

3、活动里的数学

现场设奖现场抽奖

学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。

4、故事释疑

《可能性》教案 篇三

教学目标

1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。

2、能按照指定的要求设计简单的游戏方案。

3、通过多种活动,感受可能性在生活中的运用,并体会严肃、认真的科学态度和科学精神。

教学重点:

体会并设计关于公平性的游戏。

教学重难点

游戏规则的公平性,会求简单事件发生的可能性。

教学过程

一、发现问题,大胆猜想

我们学校中学部最近举行了一场年级足球比赛(课件出示例1),看一下赛前他们在干什么?(他们在抛硬币决定发球权)

1、你们觉得他们这样做是否公平?说说你的理由。(指2名学生说说)

2、抛硬币的结果有几种情况?(2种,板书:正面朝上反面朝上),还有另外的情况吗?(没有,因为硬币一共才两面,肯定会出现这两种情况,不会出现第三种情况了。)

3、裁判抛一次硬币正面朝上和反面朝上会不会一样?正面朝上和反面朝上的可能性是多少呢?

4、那么带着你们的猜测我们一起来抛硬币验证一下。

二、动手实验,验证猜测:

1、抛硬币验证,要求:

(1)、同桌每人抛10次,一人抛另一人记结果,然后交换。用你们自己喜欢的统计方式记录下来。

(2)、反馈结果,教师填写表格。(抽10组学生进行汇总)

(3)、分析:

①、分析表格中的数据。对于这10组结果,你有什么想说的?

②、小结:刚才我们一组一组分析的时候,出现了3种情况,那么现在我们来合计下这10组数据,你又有什么发现?10组同学合计后分析我们发现正面朝上的次数和反面朝上的次数比较接近。如果实验次数更多,正面朝上的次数和反面朝上的次数会更接近吗?让我们来看一看历史上一些数学家在实验室里所做实验的结果吧。

2、出示表格和百分比,请同学们仔细看看:

(1)、你又有什么想说的?

(2)、小结:当试验的次数增加时,出现正面朝上和反面朝上机会更接近1/2。如果实验的次数更多,设想一下,正、反面朝上的可能性最后会怎么样?(可能会相等。也就是说板书:可能性相等)

(3)、那么现在我们再来看看刚才我们学校裁判抛硬币的数学问题,裁判抛硬币这种做法到底公平吗?(公平,因为出现正面和反面的可能性相同,都是1/2。板书:1/2)

3、所以在国际足球比赛中都采用这种抛硬币的方法来决定发球权和场地优先权。

三、知识迁移,实际运用

1、刚才我们做了个抛硬币的游戏,西游记里的唐僧4人取经途中也想轻松一下。大家请看,用你们刚才所学的数学知识来评判一下。(出示唐僧下棋图)

(1)、这个转盘设计公平吗?

(2)、那么请你来帮助他们设计一个公平的转盘,使他们4人没有疑惑。可以自己设计也可以和同桌合作设计,教师巡视,最后展示。

(3)、分析:这些转盘都是平均分,每种颜色出现的可能性都相等。如果转动指针30次。估计大约有多少次指针是指着红色区域?蓝色区域呢?那转动100次会有多少次指着黄色区域?

2、我们帮助唐僧4人解决了下棋的问题,有几个小朋友在课间又碰到了一个问题。(出示老鹰抓小鸡图)6名学生玩“老鹰捉小鸡”的游戏。一位小朋友制作了两个骰子,分别写上1,2,3,4,5,6。每人选一个数,然后任意掷出骰子,朝上的数是几,就选这个数的人来当“老鹰”。你觉得哪个设计更好!

(1)、因为正方体各部分都很均匀和规则,所以投掷后6个数字朝上的可能性都相等,都是1/6。

(2)、橡皮的6个面大小不等,面积就不相等。因此投掷后面积大的面朝上的可能性大。所以这个设计方案不公平。

四、趣味提升,巩固新知:

老师曾经看到在一个小区里搞一个社区活动,他们设计了这样一个转盘(出示课件),看谁分值拿的多奖品就越丰厚。

(1)、观察这个转盘转一次转到什么分值的可能性大?分别是多少?

(2)、如果允许每人转3次,转到累计分值是120分的可能性大不大?转到的机会又是多少呢?

(3)、教师转转盘验证。

(4)、学生转转盘验证。

五、总结:

今天老师和大家度过了轻松的一节课,在这节课中你们都学会了什么?游戏中也有数学知识,要体现公平、公正,希望同学们能学以致用。

课后小结

总结:

今天老师和大家度过了轻松的一节课,在这节课中你们都学会了什么?游戏中也有数学知识,要体现公平、公正,希望同学们能学以致用。

板书

板书设计:

正面朝上反面朝上

1/21/2

可能性相等

《可能性》教学设计 篇四

教学目标:

1、通过整理与复习,进一步巩固理解用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

2、进一步认识到数学与生活的联系,感悟生活中任何幸运与偶然的背后都是有科学规律支配的。

教学重点、难点:巩固用分数表示可能性的大小。

复习过程:

一、谈话导入:

1、本学期我们学习了用分数表示可能性的大小,请你举例说明。

2、学生举例说明。

二、基本练习:填空题,逐题出示,学生回答,并说明想法。

1、一个骰子的六个面分别是1-6点,掷骰子落下后,1点朝上的可能性是( )。

2、口袋中有红、黄、绿球各2个,每次任意摸一个球,摸到红球的可能性是( )。

3、一副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。如果是两副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。

4、口袋中放8个球,如果要保证摸到红球的可能性是3/4,口袋中应放()个红球。

5、五1班有男生25人,女生20人。要抽1名学生参加抽测,抽到男生的可能性是(),抽到女生的可能性是()。

6、袋中有6个红球,2个白球,每次从中任意摸一个(摸好放回)。摸40次,白球大约摸到()次。

7、有12个乒乓球,其中6个是红球,6个是黄球。从中任意摸一个,摸到红球的可能性是( )。如果第一次摸出1个红球(摸好不放回),第二次又摸出一个红球(摸好不放回),再继续摸,那么第三次摸时,摸到红球的可能性是( )。如果每次摸好后都放回呢?体会两种操作程序的不同,结果也不同。

8、抛一枚硬币,连续9次都正面朝上,第10次抛出,正面朝上的可能性为( )。

体会每次抛到正面朝上的可能性都是1/2。不会因前面抛到的结果影响到后面的可能性。

9、红红和四个女生及三个男生一起玩捉迷藏,红红捉到一个同学,这名同学是女生的可能性是()。

体会其中的可能性只与被捉的学生有关,与红红无关。

三、综合题

(一)画一画

1、右图是一个转盘,请在转盘上画上阴影,使指针转动后,停在阴影部分的可能性是1/4。

2、有10枚围棋子,从中任意摸一枚,摸到黑子的可能性是4/5。请你画出符合条件的10枚围棋子。

(二)连一连

3、在每个口袋里任意摸一个球,摸到黑球的可能性是多少?连一连。

(图意:4个口袋中分别装:2黑3白,3黑3白,4黑6白,4黑4白)

可能性是2/5可能性是1/2

(三)辩一辩

4、袋中有3个红球和2个黄球。如果摸到红球算小明赢,摸到黄球算小军赢,这个游戏公平吗?为什么?你认为谁获胜的把握大些?比赛的结果是否一定小明赢?为什么?

5、从1——10十张牌中任意取两张牌,牌面数字相加,和是奇数的可能性是多少?是偶数的可能性是多少?如果和是偶数算小明赢,和是奇数算小军赢,游戏公平吗?如果换成1——9九张牌做上面的游戏,公平吗?

6、骰子的六个面分别是1-6不同的点数,现在把两个骰子一起掷,骰子朝上的一面的的点数相加可以得到2-12不同的点数。掷一次,得到不同点数的可能性相同吗?为什么?如果猜中点数有奖,你认为猜多少点的可能性最大?猜多少点的可能性最小?

7、一种彩票是由0-9的任意数字组成的三位数组合而成,如315或426等等。某人买了一张彩票,请分析他中奖的可能性。

8、出示教材上第118页上第25题。学生读题理解题目意思,按要求回答问题,并说明想法。

9、出示教材上第119页上第26题。

先出示图,提问:这两张图按虚线能否折成正方体?说明理由。(相连的虚线必须是5条)

读题理解题目意思。按要求涂色、写数。

说明想法。将图形剪下来沿虚线折一折验证。

教学后记

课前思考:

这一节复习课内容紧扣第八单元的教学重点,设计的练习形式多样,“画一画”、“连一连”、“辩一辩”等内容都是学生们喜欢的,这样的复习课一定能让学生们的复习兴趣调动起来,相信通过这些练习和相关的复习,能让学生联系分数的意义,进一步学会用分数表示具体情境中简单事件发生的可能性的大小,掌握其方法,并能根据事件发生的可能性大小的要求,设计出相应的活动方案。这部分内容是小学阶段最后一次学习可能性,可以进一步加深对可能性大小的认识。

另外,补充这样的实际问题供学生练习:

1.袋中要放红、黄、蓝三色球共5个,如果40人每人任意摸一次(摸完后球仍放回袋中)。要让摸到红球的可能为16次,袋中要放几个球?

2.从不透明的口袋中任意摸1次,摸到红球的可能性是2/9。已知袋中的红球有6个,白球有10个,其余是黑球,黑球可能有几个?

《可能性》教学设计 篇五

教学目标:

1、认识1格表示1个单位的条形统计图,经历简单数据的统计过程,会制作简单的统计图,能根据统计表和统计图回答一些简单的数学问题。

2、培养学生统计的操作能力和解决问题的能力。

教学重点难点:

会进行数据的统计,会制作统计图,能解决简单的实际问题。

数据的统计过程。

教师活动学生活动

一、近视眼发病率。

1、出示明光小学20xx年一年级至六年级近视眼发病情况统计表。

2、制作统计图。

(1)先让学生观察这张统计图,说一说统计图的横行表示什么?竖列表示什么?

(2)观察竖列,看一看一格表示几?

(3)要求。让学生说说在制作统计图的过程需要注意些什么,有什么要提醒大家的?

3、回答问题。

(1)问题:几年级的发病人数最多,达到()人。

(2)问题:全校的近视眼人数共多少人?要求学生列式计算。

(3)问题:六年级发病人数是一年级的几倍?要求学生列式计算。

二、1分钟跳绳。

1、出示三(1)班男同学1分钟跳绳的成绩情况。

2、统计数据。

有的学生可能说通过同桌合作完成,也有学生可能一个一个进行统计……

(2)建议大家同桌合作完成:一个学生报成绩,另一个学生用“正”字的方法进行统计。

(3)交流统计的结果。

3、制作统计图。

(1)观察统计图的横行和竖列分别表示什么?1格代表几?

4、回答问题。

(1)问题:三(1)班男同学跳绳成绩最好的是几号同学,跳了几个?

问题:学校规定,1分钟达标成绩是110个,三(1)男同学达标人数是几个,占男同学的几分之几?

让学生观察这张统计表,说一说你看了以后想要发表什么意见或建议?

学生独立制作统计图。完成后先与同桌进行交流,然后再集体交流。

学生独立完成后汇报

让学生说一说看到这些数据后你有什么感想?

(1)让学生思考通过怎样的方式对这些数据进行统计?

让学生思考:如何检验统计的结果是否正确:把统计结果的人数加起来看是否等于原先的人数。

独立完成其制作。完成后同桌交流,再集体交流。

板书设计教学反思

课题第二节复习课课时52

教学目标:1、根据统计表,解决一些简单的问题;知道事件发生的不确定性,能够列举结果,并能描述事件发生的可能性大小。

2、培养学生的思维能力和解决问题的能力。

教学重点难点:

解决问题,在可能性中能列举结果和可能性的大小。

解决实际问题。

教师活动学生活动

一、回收报纸的统计表。

1、出示三(1)班同学回收废报纸的情况统计表。

2、根据统计表回答问题。

(1)问题:全班共回收报纸多少千克?

要求学生列式完成。

25+28+30+18+24+25=150(千克)

(2)问题:平均每个小组回收废报纸多少千克?

(3)问题:如果每千克废报纸值6角,这次回收的共值多少元?

在解决过程中,引导学生注意单位的换算。

150×6=900(角)=90(元)

(4)你还能提出哪些数学问题?

二、掷小正方体。

1、出示小正方体的情况:6个面上分别写着数字1、2、3、4、5、6。随意抛一下,小正方体落在地上后哪面朝上?可能出现哪些结果?

2、实验。每个同学抛20次,并记录每次出现的数字,记在书上。

6、观察这些数据后,你想说说什么?

三、摸一摸、猜一猜。

1、口袋里有一个红球和一个黄球,从中任意拿出一个球,可能是什么球?

2、口袋里有8个红球和2个黄球,从中任意拿出一个球,拿出什么球的可能性大些。

要求学生列式完成:

150÷6=25(千克)

学生讨论汇报

要求学生能够罗列出现的结果。

学生操作,教师巡视。

3、个人汇总。将自己抛了20次的结果进行汇总,出现每个数字的次数分别是多少次。

4、小组汇总。每个小组的成员将自己的结果汇报给小组长,小组长进行统计。

5、全班汇总。教师对每个小组的情况进行全班汇总,将结果出示在黑板上。

板书设计教学反思

《可能性》教案 篇六

教学目标:

1、让学生在猜想、实验验证、得出结论的过程中,进一步体验不确定事件发生的可能性的大小,能对可能发生的结果和可能性的大小作出判断,并正确使用恰当的词语描述发生可能性的大小,与同学进行交流。

2、在活动交流中,培养学生合作学习的意识及能力,使学生能够运用所学的知识解决实际问题。

教学重点:通过具体的操作活动,使学生进一步体会事件发生的“可能性”。

教学难点:帮助学生正确建立对“等可能性”的理解;让学生能够利用事件发生的。可能性的知识解决实际问题。

教学准备:课件,每组用的同型不同色的小球;转盘原材料;记录表等。

教学实录:

一、复习导入

介绍两种颜色的乒乓球。

师:你喜欢什么颜色的球?如果我把一只黄球与一只白球放在这个口袋里,让你来摸一摸,你能摸到你喜欢的颜色吗?

生:大概,可能摸到。

二、初步认识可能性大小

1、猜一猜。

师:老师带来的口袋里放了放5个黄球和1个白球,如果让你来摸一摸,你估计情况会怎么样呢?

生1:很容易摸到黄球。

生2:也可能摸到白球。

生3:我认为摸到黄球的次数会多一些。

师:情况真是这样的吗?有什么办法能让我们知道自己猜得对不对?

生:动手摸一下就知道了。

2、试一试。

师:那我们就来亲自动手试一试吧。

教师呈现活动要求:“每人每次任意摸出1个球,记录员记录摸得的结果,把球放回口袋摇一摇,换下一位继续摸。每组一共摸20次。”

师:按照要求,摸球时我们要注意些什么呢?

生1:不能抢。

生2:不能偷看。

生3:是任意摸、随便摸的意思。

……

小组活动,教师巡回指导。

3、说一说。

师:请按小组汇报一下,并说一说你们是怎样统计的。

生1:我们是用打勾的方法统计的;

生2:我们是用画横线的方法统计的;

生3:我们是数正字的;

师:能介绍一下你们小组是如何用数正字的方法进行统计的吗?

学生介绍方法。

师:你们觉得数正字的方法怎么样?

生1:简洁,一目了然。

生2:一个正字五画,数起来很方便。

师生根据统计表共同分析结果。

4、议一议。

师:通过摸球活动,你觉得能验证你刚才的猜想吗?

生:能。

师:你能得出什么结论吗?

生:摸到黄球的可能性大。

师:为什么会这样呢?

生:黄球多比白球多,摸到黄球的可能性就比白球的可能性大。

师:也可以怎么说?

生:摸到白球的可能性比黄球小。

教师板书:可能性大小

三、理解等可能性

1、变式思考,明晰概念。

教师出示图并提问:口袋里装着5个黄球和一个白球,任意摸,情况会怎样呢?

生:摸到白球

师:一定是白球吗?

生:不一定,可能是白球,也可能是黄球。

师:摸到白球的可能性会怎么样呢?

生:摸到白球的可能性比黄球大。

2、实验比较,加深感悟。

教师出示图并提问:如果把口袋里的球换成4个白球、2个黄球呢?

生1:摸到白球的可能性比黄球大一些。

生2:黄球摸到的次数可能比白球少。

师:让我们来继续通过试验验证我们的想法吧。

学生动手实验,教师针对各小组的不同情况,分别给予指导。

统计各小组摸到不同颜色球的情况,记录并分析。

师:同样是可能性有大有小,你有什么新的发现吗?

生1:摸到黄球和摸到白球的次数相差没那么大了;

生2:因为白球和黄球相差没那么多了,摸到白球的可能性也就没那么大了。

3、促进迁移,深化理解。

教师出示图并提问:如果是3个黄球和3个白球,任意摸球,又会怎么样呢?

生:可能摸到白球,也可以摸到黄球。

师:现在摸到这两种球的可能性是……?

生:一样的,相等的。

师:为什么?

生1:因为它们的个数一样的。

生2:球的个数相等,被摸到的可能性相同。

……

教师板书:相等

4、引发探究,鼓励创新。

教师出示口袋,里面放着5个白球。

师:要使摸到黄球的可能性比白球大一些,怎么放黄球?

生1:摆6个。

生2:摆6-9个。

师:这几种摆法中,哪一种只多那么一点点?

生:应该摆6个。

师:要使摸到黄球的可能性比白球大得多,怎么放呢?

生:摆1个,2个,3个都可以。

师:你们也能利用今天所学的知识提出类似的问题吗?

生:摸到的黄球的可能性和摸到的白球的可能性差不多。

生1:6-7个。

生2:摸4-5个也行。

生3:摸到黄球的可能性和摸到白球的可能性相等,要摆几个黄球?

生4:5个。

四、体会等可能性的公平性

1、感受等可能性在实际生活的运用

播放录像:足球比赛抛硬币选择场地的情境。

师:谁知道裁判在干什么?

生:用抛硬币的方法选场地,还可以确定谁先发球。

师:你觉得用抛硬币的办法决定场地和谁先发球,是不是公平合理呢?

生1:因为硬币有两个面,只要两个队长选择一个面就可以了,很方便。

生2:抛到正面与反面的可能性一样的,就比较公平。

师:类似于这样的公平竞争的方法还有哪些呢?

生1:铁锤、剪刀、布。

生2:掷骰子。

……

2、设计等可能性。

多媒体播放两学生下棋场景,两小朋友正用掷骰子的方法决定谁先走棋。

画外音:“掷到六点朝上就你走,掷不到六点就我走。”

师:如果是你,你愿意按这个规则与他下棋吗?

生1:不愿意。因为六点只有一面,甩不到六的有好几面,不公平。

生2:六点很难抛到,1、2、3、4、5很容易抛到。

师:如果你来下棋,同样用掷骰子的方法,你能设计一个公平的规则吗?

生1:如果掷到单数就你走,扔到双数就我走。

生2:如果掷的点数大,你大你就走。

生3:如果掷到1,2,3面,你走,如果掷到4,5,6我走。

生4:如果掷到单数,或是双数也可以的。

师:为什么这些规则你愿意接受呢?

生:因为它们的可能性相等。

五、综合应用可能性大小的知识。

师:老师前两天我去逛商场,看到商场里正用转盘搞一场“转、转、转,转出幸运星”的有奖促销活动,我们来看一看。

电脑出示转盘

教师先指导学生观察转盘,并说一说转动这个转盘,结果有几种可能。

师:如果你是商场的经理,你会制定怎样的中奖规则?

生1:绿色没有奖,红色一等奖。

生2:绿色三等奖,紫色二等奖,红色一等奖……

师:我注意到,你们都是把红色定为一等奖,为什么呢?

生1:因为转到红色的可能性比较少。

生2:一等奖奖品贵,应该由少数人得,不然老板就亏了。

……

师:其它几个商场的老板看到这个转盘,也都想用转盘搞一场有奖促销的活动,不过每个商场老板的想法不太相同。你能不能根据老总的要求来设计一个转盘?

分小组按要求制作转盘。

交流各组制作的转盘。

师:如果你是消费者,你最希望去转哪个转盘?为什么?

生1:我最希望转我们自己的转盘。

生2:我最希望转这个,因为获奖的可能性很大。

生3:是,要求中奖的可能性很大,不中奖的可能性很小。

师:如果你是老板,你希望设计哪个转盘?

生:当然希望是得大奖的人数少的了。

师:想想这几个转盘都是按哪个要求制作的?

生:中奖和不中奖的可能性相等。

师:在生活中,象这样的事例是随处可见,关键是要靠我们用明亮的双眼去寻找、去发现,用你智慧的大脑去分析、去判断。

可能性教学设计 篇七

教学内容

人教版义务教育教科书小学数学五年级上册第四单元《可能性》。

教学目标

1.使学生初步体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定”“可能”“不可能”等词语来描述随机事件发生的可能性。

2.在活动过程中,使学生能够列出简单试验中所有可能发生的结果。

3.让学生经历“猜想—实践—验证”的过程,培养学生的猜想意识、表达能力以及初步的判断和推理能力,让学生在同伴的合作和交流中获得良好的情感体验。

4.使学生感受到生活与数学的联系,培养学生学习数学的兴趣。

教学重难点

通过活动让学生充分体验随机事件发生的确定性和不确定性。

教学准备

课件、盒子、节目签、乒乓球等。

教学过程

一、激趣导入,探究新知

通过趣味游戏,初步感知“可能性”。教师:老师知道,xxx班的孩子们最善于参与各项有意义的活动,这节课我们就从一场精彩的联欢会开始吧!聪明的同学们在联欢会中设置了一个激动人心的环节,那就是通过抽签决定要表演的节目类型。同学们想体验吗?

学生:想!

教师:先来认识我们的节目签吧!(课件出示节目签)

学生:有唱歌、跳舞、朗诵。

教师(课件显示节目签翻转至背面,并打乱位置):请一位同学来抽签。

教师:请第一位同学来抽签,他会抽到什么节目呢?请大家先猜一猜。学生会对抽签结果进行猜测:可能是唱歌,可能是跳舞,也可能是朗诵,3种情况都有可能。教师在黑板上板书:可能。

教师(课件翻出中间一张:跳舞或其他签):第一位同学抽到的是什么节目?

学生:跳舞。

教师:为了节目不重复,被抽去的跳舞签就不放回去,还剩下两张签。接下来该第二位抽签了,她可能会抽到什么呢?

学生:唱歌和朗诵都有可能。

教师:确定吗?

学生:不确定。

教师:还可能抽到“跳舞”吗?

学生:不可能(板书:不可能)。

教师:理由是?

学生:因为两张签里没有跳舞。

教师:我请第二位同学抽取一张。(抽后汇报结果)(课件翻开第一张:朗诵)。

教师:请第三位同学抽签。现在只剩最后一张了,第三位同学会抽到什么呢?

学生:唱歌(一定是唱歌)。

教师:能确定吗?为什么?(教师板书:一定)

学生:确定,因为只有一张签,一定是唱歌。

教师(小结):同学们,我们用“可能”“不可能”“一定”来描述抽签的情况。生活中还有很多这样的现象,这也是我们这节课要研究的数学问题——可能性。(板书:可能性)(设计意图:“可能性”对于五年级的学生来说并不是完全空白的,学生在生活和学习中已经具有一些简单随机现象的知识基础和生活经验。这里用学生熟悉的“联欢会上抽签表演节目”的生活实例导入新课教学,让学生在猜测中感受,在活动中明晰,以形成对“可能性”的初步认识,同时也有效地激发了学生的学习欲望,吸引学生参与到数学学习中来。)

二、实践验证,领悟新知

1.摸球实验

教师:老师还为同学们带来了一个神奇的游戏盒子(出示盒子),从盒子里我们也能找到可能性的知识。

教师:(摇动盒子,盒子里是什么?学生回答!再从盒子里拿出一个红色乒乓球)这是老师为同学们特制的——红色乒乓球。如果老师将这个红色的乒乓球放进盒子,你想摸出红色的乒乓球吗?

学生:想!

教师:如果盒子里一共有六个大小形状完全相同的红色乒乓球,你从盒子里任意摸取一个,会有怎样的结果?

学生:一定会摸到红色乒乓球。

教师:理由呢?

学生:因为盒子里全是红色乒乓球,只能摸出红色乒乓球。

教师:如果游戏盒子变了(出示4红2黄),想从盒子里摸出一个红色的乒乓球,摸取一次会有怎样的结果?

学生:可能摸到,也可能摸不到。

教师:想试试吗?为什么?

学生:想,因为结果不确定。组织学生体验摸球过程,每摸出一个记录一个,并将球放回去,摇匀后再进行下一次摸球试验。(引导学生摸球时不偷看,说明将球放回去是为了确保条件不变,摇匀是为了公平)

教师:游戏盒子再变一变,变成了——3红3黄(课件出示),从盒子里任意摸取一个乒乓球,能摸到红色乒乓球吗?一定会摸到吗?

学生:可能摸到,但不一定。组织学生再次体验摸球过程,并记录,如果连续出现几次红色球或者黄色球,提问:下一个一定是红色球或黄色球吗?让学生感受随机事件的不确定性,每次发生的结果与上一次结果没有直接关系。

教师:变!——游戏盒子里面的乒乓球变成了这样,1红5黄(课件出示),从盒子里任意摸出一个球,还会摸出红色乒乓球吗?理由是?

学生:可能摸到!因为盒子里有红色乒乓球。组织学生再次体验摸球过程,并记录,让学生再次感受随机事件的不确定性,体会每次发生的结果与上一次结果没有直接关系。

教师:如果盒子里有10个黄球1个红球呢?还有可能摸到红球吗?学生:有可能。

教师:如果盒子里有100个黄球1个红球呢?还有可能摸到红球吗?如果盒子里有1000个黄球1个红球呢?10000个黄球1个红球呢?还有可能吗?

学生:有可能。

教师:如果去掉这个红球呢?还能摸到红球吗?

学生:不可能。(教师要充分给予学生猜测、试验、交流的机会。在交流时,教师还要引导学生在感受的基础上用可能、不可能、一定等词语描述摸球的各种情况。)(设计意图:本环节旨在通过简单实验的对比,让学生亲历猜想、实践、验证、交流,丰富学生对确定事件和不确定事件的体验,初步感受随机事件发生的统计规律性和可能性的大小。)

2.猜球实验。

教师:盒子又变了,变成了……是老师直接告诉你们结果呢?还是我提供一个线索你们自己想办法猜出盒子里的球是什么颜色的?

学生:提供线索,自己猜。

教师:(出示课件)线索是,可能与A盒子、B盒子或者C盒子中的某一个完全相同,到底与哪个盒子相同呢?怎么办?

学生:从盒子中摸出一个球。

教师:试试看。(学生从盒子里摸出一个球,并出示所摸出的球)。知道是哪个盒子吗?学生:不能确定,可能是A盒子、或者C(B)盒子,但可以排除B(c)。

教师:不确定,怎么办?

学生:再摸一次。学生再次从盒子里摸球,并出示结果,判断盒子,如果还无法判断,就继续摸球,直到能够判断是A盒子为止。

3.放球实验。

教师:同学们还想继续玩吗?

学生:想。

教师:可是老师的游戏盒子变不了了,想请同学们帮忙制作游戏盒子,愿意吗?

学生:愿意!

教师:但制作游戏盒子需要遵守规则,请看!(出示课件)按规则作出第一个游戏盒子。(为了方便用此图代替盒子,用磁扣代替乒乓球)怎么放?请同学汇报放球方法。

学生:放4个红球。

教师:那第二个盒子该怎样完成呢?(出示课件)请同学们三人一个小组,用圆形纸片代替乒乓球,在桌子上摆一摆,小组内交流自己的想法,做好小组汇报的准备。请学生汇报。因为结果多样,老师在黑板上操作呈现,并订正。

教师:用一句话概括所有的做法,可以怎样说?

学生:只要盒子里不装黄色球就可以了。

教师:第三个盒子又来啦!又怎样做呢?小组先摆一摆,先在组内交流讨论,再小组汇报。学生汇报,并评价。

教师:用一句话概括可以怎样说?

学生:至少要放一个蓝色球但不能全是蓝色球。(放1-3个蓝色球,再放其它颜色的球,直到放够四个球。)(设计意图:本环节旨在通过动手操作,让学生通过学习的可能性知识去判断如何放球,感知结果与条件的关系。)

三、灵活运用,巩固新知

教师:我们学会了游戏盒子的制作,自己设计一个更加有趣的游戏盒子,课余时间和同学尽情的去研究吧!现在我们运用这节课学到的知识去解决问题吧!

1.练习十一第2。

教师:认真读题,独立思考,并分享你的结论。

学生:可能是1、2、3、4、5、6,这6个数都有可能。教师:朝上的面可能是7吗?0呢?因为?

学生:不可能,因为没有7,0这两个数。

教师:如果老师想让掷出的结果一定是6朝上,可以怎样设计呢?

学生:只要正方体的六个面都写数字6就可以了。

2.出示第二题,判断对错。

判断事件发生的可能性描述的是否准确,学生用手势汇报判断结果,集体订正。教师根据问题适当拓展。第四小题,引导学生明确硬币有正、反两面,抛出后可能是正面朝上,也可能是反面朝上,是不确定的。(设计意图:通过学生们相互交流、评析,感受数学就在自己身边,体会数学学习与现实的联系。让同学们判断,是让学生认识到客观事件发生的确定性和不确定性与个人愿望无关。)

四、交流归纳,全课小结

教师:有一位聪明的将军通过抛硬币让一场战争取得了不可思议的胜利,想听这个故事吗?

学生:想。出示故事,听故事。

教师:我们抛出的硬币结果是怎样的?

学生:可能正面、也可能反面朝上。

教师:而将军抛出的硬币结果是?

学生:一定是正面朝上。

教师:聪明的将军巧妙将可能变成了(一定),从而激发了士兵的信心,战胜了强大的敌人。所以信心对我们每个人都非常重要,在面对困难和挫折时,我们要充满信心,通过努力去克服困难、解决问题,就能成功!

教师:这节课同学们表现的都非常棒!请同学们对自己优秀的表现做做简单的评价吧!学生自我评价,教师给予肯定和鼓励。教师:在课堂活动中,我看到同学们个个信心满满,能积极的思考问题,大胆的汇报交流,让我们愉快的度过一节有趣的数学课,老师为优秀的你们点赞!也有一句话与你们分享(课件出示),请齐读(人人都有可能成功!)