1. 主页 > 知识大全 >

一元二次方程教学设计【优秀5篇】(一元二次方程课堂教学设计)

作为一无名无私奉献的教育工作者,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?下面这5篇一元二次方程教学设计是快回答为您整理的一元二次方程范文模板,欢迎查阅参考。

元二次方程复习教案 篇一

1、复习一元二次方程,一元二次方程的解的概念;

2、复习4种方法解简单的一元二次方程;

3、会建立一元二次方程的模型解决简单的实际问题。

[学习过程]

一、回顾知识点

1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。

2、一元二次方程的一般形式是_______________________________。

3、一元二次方程的解法有____________、____________、____________、____________。

4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。

①当△0时,方程有__________;

②当△=0时,方程有__________;

③当△0时,方程有__________。

5. 一元二次方程 的两根为 , 则两根与方程系数之间有如下关系:

二巩固练习

二、填空题:

1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。

2、已知x=1是一元二次方程x2-2mx+1=0的`一个解,则m=______。

3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。

4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。

5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。

6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。

7、解方程5(x- )2=2(x- )最适当的方法是_____________。二、填空题:(每题3分,共24分)

8.一元二次方程 的二次项系数为 ,一次项系数为 ,常数项为 ;

9. 方程 的解为

10.已知关于x一元二次方程 有一个根为1,则

11.当代数式 的值等于7时,代数式 的值是 ;

12.关于 实数根(注:填“有”或“没有”)。

13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 ;

14.已知一元二次方程 的一个根为 ,则 .

15. 阅读材料:设一元二次方程 的两根为 , ,则两根与方程系数之间有如下

关系:根据该材料填空:已知 , 是方程 的两实数根,则 的值为______ .

三、选择题:(每题3分,共30分)

1、关于x的方程 是一元二次方程,则

A、a0 B、a≠0 C、a=0 D、a≥0

2.用配方法解下列方程,其中应在左右两边同时加上4的是

A、 B、 C、 D、

3.方程 的根是

A、 B、 C、 D、

4.下列方程中,关于x的一元二次方程的是

A、 B、 C、 D、

5.关于x的一元二次方程x2+kx-1=0的根的情况是

A、有两个不相等实数根 B、没有实数根

C、有两个相等的实数根D、不能确定

6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是

A、1 B、0 C、0或1 D、0或-1

7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元。设这两年投入教育经费的年平均增长百分率为 ,则下列方程正确的是

A、 B、

C、 D、

8. 已知 、 是方程 的两个根,则代数式 的值

A、37 B、26 C、13 D、10

9.等腰三角形的底和腰是方程 的两个根,则这个三角形的周长是

A、8 B、10 C、8或10 D、不能确定

10.一元二次方程 化为一般形式为

A、 B、 C、 D、

四、解答题:(共46分)

19、解方程(每题4分,共16分)

(1) (2)

22、已知a、b、c均为实数,且 ,求方程

的根。(8分)

23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,

每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利

1200元,那么每套应降价多少?(10分)

24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。

栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)

(1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________

公顷。在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。

(2)为了满足城市发展的需要,计划到2005年使城区绿地总面积达到72.6公顷,试求这两年(2003~2005年)

绿地面积的年平均增长率。

元二次方程的应用 篇二

一元二次方程的应用(一)

一、素质教育目标

(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

三、教学步骤

(一)明确目标

(二)整体感知:

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).

2.例1 两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一)

设较小奇数为x,另一个为x+2,

据题意,得x(x+2)=323.

整理后,得x2+2x-323=0.

解这个方程,得x1=17,x2=-19.

由x=17得x+2=19,由x=-19得x+2=-17,

答:这两个奇数是17,19或者-19,-17.

解法(二)

设较小的奇数为x-1,则较大的奇数为x+1.

据题意,得(x-1)(x+1)=323.

整理后,得x2=324.

解这个方程,得x1=18,x2=-18.

当x=18时,18-1=17,18+1=19.

当x=-18时,-18-1=-19,-18+1=-17.

答:两个奇数分别为17,19;或者-19,-17.

解法(三)

设较小的奇数为2x-1,则另一个奇数为2x+1.

据题意,得(2x-1)(2x+1)=323.

整理后,得4x2=324.

解得,2x=18,或2x=-18.

当2x=18时,2x-1=18-1=17;2x+1=18+1=19.

当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17

答:两个奇数分别为17,19;-19,-17.

引导学生观察、比较、分析解决下面三个问题:

1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

2.解题中的x出现了负值,为什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。3.选出三种方法中最简单的一种。

练习

1.两个连续整数的积是210,求这两个数。

2.三个连续奇数的和是321,求这三个数。

3.已知两个数的和是12,积为23,求这两个数。

学生板书,练习,回答,评价,深刻体会方程的思想方法。例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

分析:数与数字的关系是:

两位数=十位数字×10+个位数字。

三位数=百位数字×100+十位数字×10+个位数字。

解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.

据题意,得10(x-2)+x=3x(x-2),

整理,得3x2-17x+20=0,

当x=4时,x-2=2,10(x-2)+x=24.

答:这个两位数是24.

练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)

2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

教师引导,启发,学生笔答,板书,评价,体会。

(四)总结,扩展

1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。

数与数字的关系

两位数=(十位数字×10)+个位数字。

三位数=(百位数字×100)+(十位数字×10)+个位数字。

……

2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。

四、布置作业

教材P.42中A1、2、

一元二次方程的应用(一)

一、素质教育目标

(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

三、教学步骤

(一)明确目标

(二)整体感知:

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).

2.例1 两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一)

设较小奇数为x,另一个为x+2,

据题意,得x(x+2)=323.

整理后,得x2+2x-323=0.

解这个方程,得x1=17,x2=-19.

由x=17得x+2=19,由x=-19得x+2=-17,

答:这两个奇数是17,19或者-19,-17.

解法(二)

设较小的奇数为x-1,则较大的奇数为x+1.

据题意,得(x-1)(x+1)=323.

整理后,得x2=324.

解这个方程,得x1=18,x2=-18.

当x=18时,18-1=17,18+1=19.

当x=-18时,-18-1=-19,-18+1=-17.

答:两个奇数分别为17,19;或者-19,-17.

解法(三)

设较小的奇数为2x-1,则另一个奇数为2x+1.

据题意,得(2x-1)(2x+1)=323.

整理后,得4x2=324.

解得,2x=18,或2x=-18.

当2x=18时,2x-1=18-1=17;2x+1=18+1=19.

当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17

答:两个奇数分别为17,19;-19,-17.

引导学生观察、比较、分析解决下面三个问题:

1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

2.解题中的x出现了负值,为什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。3.选出三种方法中最简单的一种。

练习

1.两个连续整数的积是210,求这两个数。

2.三个连续奇数的和是321,求这三个数。

3.已知两个数的和是12,积为23,求这两个数。

学生板书,练习,回答,评价,深刻体会方程的思想方法。例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

分析:数与数字的关系是:

两位数=十位数字×10+个位数字。

三位数=百位数字×100+十位数字×10+个位数字。

解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.

据题意,得10(x-2)+x=3x(x-2),

整理,得3x2-17x+20=0,

当x=4时,x-2=2,10(x-2)+x=24.

答:这个两位数是24.

练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)

2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

教师引导,启发,学生笔答,板书,评价,体会。

(四)总结,扩展

1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。

数与数字的关系

两位数=(十位数字×10)+个位数字。

三位数=(百位数字×100)+(十位数字×10)+个位数字。

……

2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。

四、布置作业

教材P.42中A1、2、

元二次方程 篇三

教学目标

1. 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

3. 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

教学重点及难点

1、 用直接开平方法解一元二次方程;

2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

教学过程设计

一、情景引入,理解方法

看一看:特殊奥林匹克运动会的会标

想一想:

在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

解:由题意得: x2=144

根据平方根的意义得:x=± 12

∴原方程的解是:x1=12 , x2=-12

∵边长不能为负数

∴x=12

了解方法:

上述解方程的方法叫做直接开平方法。通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法。

【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。

第三阶段:怎样解方程(1+x)2=144?

请四人学习小组共同研究,并给出一个解题过程。可以参考课本或其他资料。小组长负责清楚的记录解题过程。

第四阶段:众人齐心当考官!

请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程。

1、分析学生所编的方程。

2、从学生的编题中挑出一个方程给学生练习。

3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

4(x+1)2-144=0

归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。

【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

三、巩固方法,提高能力

请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

⑴ x2=3 ⑵ 3t2-t=0

⑶ 3y2=27 ⑷ (y-1)2-4=0

⑸ (2x+3)2=6 ⑹ x2=36x

四、自主小结

今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

元二次方程 篇四

[课 题]§12.1一元二次方程[教学目的] 使学生了解整式方程、一元二次方程的意义;使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学重点] 使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学难点] 使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项,[教学关键] 使学生掌握在指出一元二次方程的二次项系数、一次项系数和常数项时,一定要包括它们的符号。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1[教学过程][复习提问]例方程解应用题的一般步骤是什么?[讲解新课]引例可由教师提出并分析其中的数量关系,设出未知数,列出代数式,并根据等量关系列出方程:(80-2x)(60-2x)=1500。(这其中应重点复习列方程解应用题的方法、步骤,或讲解或提问应视具体情况而定)。提问:如何将上述方程整理?整理后,得:x2-70x+825=0。这里不必多讲,只指出:这个方程(什么方程?这里不谈)与我们已经学过的一元一次方程不同,我们学了这一章,就可以解这个方程,从而解决上述问题。接着书写教科书第4页的问题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?引导学生分析题意,设未知数,列出代数式,找出相等关系,列出方程:x(x+5)=150。去括号,得: x2+5 x=150。现在来观察这个方程:它的两边都是关于未知数的整式,指出“这样的方程叫做整式方程。”就这一点来说它与一元一次方程没有什么区别,因而,一元一次方程也是整式方程,但一元一次方程未知数的次数是1,而上列方程未知数的最高次数是2,所以,只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。(这样与一元一次方程对比着讲,既使整式方程的内含扩大,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。)下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,两边展开,得3x2+5x-12=x2+4x+4移项,得 2x2+x-16=0事实上,方程x2+5 x=150移项,得 x2+5 x-150=0这就是说,任何一个关于x的一元二次方程,经过整理,都可以化成下面的形式: ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。这里应强调指出,方程 ax2+bx+c=0只有当a≠0时,才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。随后指出,在方程中,ax2,bx,c各项的名称,并举例说明。(ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。)例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。解:去括号,得 3x2-3 x=2x+4+8移项,合并同类项,得 x2-5 x-12=0二次项系数是3;一次项系数是-5;常数项是-12。[课堂练习]教科书第5页练习第1,2题。[课堂小结]通过本节课的学习,我们知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)。在这里我们要特别注意a≠0这个条件。同时我们还学习了一元二次方程化成一般形式后,什么是二次项系数,什么是一次项系数,什么是常数项,在指出这三项内容时,要特别注意它们的符号。[课外作业]复习教科书第4,5页的内容,预习教科第6页上的内容。[板书设计]课题:例题:辅助板书:[课后记]

通过本节课的学习,大部分学生已掌握了什么是整式方程,什么是一元二次方程的概念,对今后学习一元二次方程的解法打下了良好的基础。

元二次方程教学设计 篇五

一、教学目标:

1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。

2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。

3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。

二、教学重难点:

1、重点---会利用配方法熟练解一元二次方程。

2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。

三、教学过程

(一)活动1:提出问题

要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。

师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。

(二)活动2:温故知新

1.填上适当的数,使下列各式成立,并总结其中的规律。

(1)x+ 6x+ =(x +3 )

(2) x+8x+ =(x+ )

(3)x2-12x+ =(x- )2

(4) x2- 5x+ =(x- )2

(5)a2+2ab+ =(a+ )2

(6)a2-2ab+ =(a- )2

2.用直接开平方法解方程:x2+6x+9=2

设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。

(三)活动3:自主学习

自学课本P31---P32思考下列问题:

1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?

2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)

3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?

4.什么叫配方法?配方法的目的是什么?

5.配方的关键是什么?交流与点拨:

重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。

注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。

设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想

(四)活动4:例题学习

例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。

交流与点拨:用配方法解一元二次方程的一般步骤:

(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)

(2)移项,使方程左边只含有二次项和一次项,右边为常数项。

(3)配方,方程两边都加上一次项系数一半的平方。

(4)原方程变为( mx+n)2=p的形式。

(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。

(五)课堂练习:

1.教材P34练习1(做在课本上,学生口答)

2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。

设计意图:通过练习加深学生用配方法解一元二次方程的方法。

四、归纳与小结:

1.理解配方法解方程的含义。

2.要熟练配方法的技巧,来解一元二次方程,

3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。

4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。

五、布置作业

教材P42习题22.2第3题

---教后反思

通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

1、学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:

①化二次项系数为1;

②移常数项到方程右边;

③方程两边同时配上一次项系数一半的平方;

④化方程左边为完全平方式;

⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固

2、教学方法上的几点体会:

①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。

②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:

①二次项系数没有化为1就盲目配方;

②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);

④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

5、在我本节课的教学当中,也有如下不妥之处:

①对不同层次的学生要求程度不适当;

②在提示和启发上有些过度;

③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

学而不思则罔,思而不学则殆。以上5篇一元二次方程教学设计就是快回答小编为您分享的一元二次方程的范文模板,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。