作为一位不辞辛劳的人民教师,时常需要用到教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?为了让您对于平行四边形的面积教案的写作了解的更为全面,下面快回答给大家分享了8篇平行四边形的面积教案,希望可以给予您一定的参考与启发。
平行四边形的面积教案 篇一
教学内容:
教材平行四边形的面积的内容。
知识目标:
通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
能力目标:
在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。
情感目标:
通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。
教学重点:
掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。教学难点:
初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。
教具学具:
方格纸、平行四边形卡片、剪刀、三角板、直尺等。
探索新知教学片段:
1、比一比,估一估师:现在我们把平行四边形花坛画到纸上,我们先认识平行四边形的底和高。平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长,它们的面积哪个比较大?生:一样大。
2、生:长方形比较大。生:平行四边形比较大。 ……
师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。生:可以用数格子的方法。我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。
师:那么用数方格的方法数数看。数一数,它们的面积各是多少?……
师:哦,你们数的结果是都是72平方米,说明……
生:平行四边形的面积和长方形的面积相等。
师:也就是……
生:平行四边形的面积也是72平方米。
师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的'问题。(板书:平行四边形的面积)
[让学生对“平行四边形面积的计算方法”提出猜想,再进行验证,在获得知识的同时能培养学生思考的深入性和严密性。也可制造悬念,进一步激发探究的欲望。新课标指出:“有效的数学学习活动不能单纯地依赖于模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”但探究学习并不是任由学生发挥而不加引导的。学生往往在运用已有的知识
解决问题的过程中还存在着某些障碍。这就需要教师相机诱导,及时介入,以保证学生把更多的精力投入到更好的学习活动中去。]
2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?……生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的发现。
师演示,学生观察平行四边形变成长方形的过程……
师:谁来说说自己的发现?
生:平行四边形割补完变成一个长方形了。
生:平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长。
3、师:刚才我们把平行四边形转化为长方形时,是沿着平行四边形的什么剪的?大家为什么要沿着高剪开?
生:是沿着平行四边形的高剪的。
师:平行四边形的高有几条?
生:无数条。
师:所以,我们沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。(边说边演示平行四变形通过割补法转化成长方形的过程。)
4、师:观察比较平行四边形和长方形的面积,说说你们发现了什么?
生:平行四边形的底=长方形的长,平行四边形的高=长方形的宽师:我们知道长方形的面积=……
生:长方形的面积=长×宽
生:我猜平行四边形的面积应该与它的底和高有关系。
5、师:现在,谁能完整地说说平行四边形的面积计算公式呢?学生回答,老师板书:平行四边形的面积=底×高
6、师:刚才应用了“转化”的思想,大家都值得表扬。
7、下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?
(师板书“S=a×h”)
[在探究过程中,学生自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦,变枯燥的说教为求知的动力。在教学中给学生留足了自主探索的空间,有在方法上恰当引导,最终达到学习的目的,让学生体验到成功的喜悦。]
8、师小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
9、实际运用。
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
(1)(出示例1)请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?学生回答,老师小结:求平行四边形的面积我们只要知道其中一组底和高就能求面积了。
(2)有一块地近似平行四边形,底是43米,高是20.1米。这块地的面积约是多少平方米?(得数保留整数)
[将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐,体会到“自己的学习是有用的,有价值的。”笛卡儿说过:“最有价值的知识是关于方法的知识。”本节课以探索平行四边形的面积计算公式为明线,以渗透“转化”的数学思想为暗线。两条主线相辅相成,让学生在获取知识的同时,掌握数学学习的方法,从而使数学课堂真正成为学生获得成功和成长的场所。]
教学反思:
动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中,我为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现。接着鼓励学生用自已的思维方式大胆地提出猜想,对于学生的猜想,教师均给予鼓励。因为创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
《平行四边形的面积》教案设计 篇二
教学内容:义务教育课程标准实验教科书(人教版)五年级上册79页——83页
教学目标:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。
3、培养学生的小组合作意识,发展学生的空间观念。
教学重难点:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教具准备:
教学课件、平行四边形教具和学具、剪刀等。
教学过程:
一、情境引入
1、师:第一单元我们学习了小数乘法,谁能简单地说一说1.36×0.72,我们是怎样进行计算的?(同时大屏幕显示小数乘法竖式)
师:(大屏幕显示整数乘法竖式)我们把1.36×0.72看成136×72来计算,也就是把小数乘法这个新知转化成我们以前学过的整数乘法这个旧知,这道题我们就会解答了。
2、师:第二单元我们又学习了小数除法,谁再来说一说7.65÷0.85,我们又是怎样进行计算的?(同时大屏幕显示小数除法竖式)
师:(大屏幕显示整数除法竖式)我们把7.65÷0.85看成765÷85来计算,也就是把小数除法这个新知转化成我们以前学过的整数除法这个旧知,这道题我们也能解答了。
3、师:同学们你们能否用一个词来概括一下我们刚才小数乘法和除法的学习方法?
师:(板书:转化)其实“转化法”是我们数学学习一种非常重要的学习方法,许多数学新知都是通过转化变成旧知,最后使问题得到解决。今后我们在学习中如果再遇到一个新知识,无法解决时,我们就可以尝试着用“转化法”去探索。记住了吗?
4、师:王老师班要进行小组评比,班长设计了两种不同的图形的评比表,这两种图形你们认识吗?(出示一个平行四边形、一个长方形)
5、师:现在老师想知道这两种图形的评比表各用了多少塑料板也就是求什么?
师:你会求它们的面积吗?
师:那么这节课我们就来探究平行四边形的面积。(板书:平行四边形的面积)
6、师:刚才同学们说会求长方形的面积,谁来说一说长方形的面积等于什么?(板书;长方形的面积=长×宽)
师:长方形面积的大小和它的长和宽有关系,下面老师请同学们猜想一下平行四边形面积的大小会和谁有关?(板书底、高)
师:同学们猜想平行四边形的面积的大小和它的底和高有关,老师给同学们变两个小魔术,看谁观察的仔细,能发现其中的奥秘。(同时板书平行四边形面积)
老师演示:
魔术1、注意观察平行四边形的面积又有什么变化?为什么变大了?这说明平行四边形的面积的大小肯定和谁有关?(老师在底的下面做标注)
魔术2、注意观察平行四边形的面积有什么变化?为什么变小了?这说明平行四边形的面积的大小肯定又和谁有关?(老师在高的下面做标注)
7、师:我们发现平行四边形面积的大小和它的底和高有关,在长方形的面积中它的长和宽是相乘的关系,老师请同学们再大胆地推想一下在平行四边形的面积中它的底和高会有什么样的关系呢?
8、师:刚才同学们猜想出在平行四边形的面积中它的底和高是相乘的关系,这个乘号就在老师的手上,但是老师还不能把它放在底和高的中间,我把它先放在下边,为什么呢?因为平行四边形的面积等于底乘高这个结论是同学们猜想出来的,它是否正确我们需要验证一下。如果同学们验证出你们的猜想是正确的,老师再把它挪到底和高的中间,你们有没有信心证明你们的猜想是正确的?
二、探究建模
(一)数格子法
1、师:看大屏幕,同学们手中都有一张和大屏幕上一样的格子纸,格子纸上画有一个长方形和一个平行四边形,请同学们数一数长方形的长、宽、面积各是多少填在表格里,然后再数一数平行四边形的底高面积各是多少也填在表格里。注意一个方格代表1平方厘米,不满一格的都按半格计算。填完之后在小组内讨论一下:你发现了什么?
2、师:谁来汇报一下你数的结果?
3、师:你们发现了什么?长方形的面积等于长乘宽,你们能推出平行四边形的面积等于什么?
4、师:通过数格子我们发现平行四边形的面积等于底乘高,看来同学们刚才猜想的结论还真是正确的。你们真了不起!掌声鼓励一下!看来老师得把这个乘号搬搬家了!老师可以把这个乘号前进一大步,但还不能把它放在底和高的中间,为什么呢?因为刚才的平行四边形有点特殊,它们有格子我们可以证明它们的面积等于底乘高。,如果不数格子,或者说不用数格子的办法我们能不能证明任意的一个平行四边形的面积都等于底乘高呢?我们还得用实验验证,离胜利只差一步之遥了,你们有没有信心?谁来说一说你还想怎样验证?(老师给你们点提示。)
(二)转化法
1、师:课前我们通过复习小数乘法和除法,发现“转化法“是一种非常好的学习方法。你们可以尝试着用“转化法”验证一下刚才的结论是不是正确?
2、师:如果让你转化,你会把平行四边形转化成什么图形?为什么?
3、师:接下来我们就做实验:你们手中都有两张一模一样的平行四边形纸板,请你尝试着把其中一张转化成长方形,然后观察转化后的长方形和原来平行四边形,看看你又发现了什么?
4、师:谁来说一说你是怎样转化的?(把转化的过程贴在黑板上)
5、师:谁来汇报一下,你发现了什么?
6、师:任意的一个平行四边形你们都发现它的面积等于底乘高,看来你们猜想的结论是正确。恭喜你们!掌声鼓励!这回老师可以把乘号放在底和高的中间了。
(三)整理结论
1、师:我们一起读一下我们发现的结论。
2、师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。
3、师:你学到了些什么?
4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah
(四)质疑问难
1、师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?
三、解释应用
1、师:同学们想一想要想求平行四边形的面积必须知道什么?
2、口答题
3、判断题
4、计算题
5、思考题
四、课堂总结
通过这节课的学习你有哪些新的收获?
平行四边形的面积教案 篇三
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册P80—81《平行四边形的面积》。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:
探索并掌握平行四边形的面积计算公式。教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:
自制平行四边形框架、方格纸、多媒体课件、平行四边形卡片、剪刀、三角板、直尺等。
教法学法:
本节课主要引导学生采用自主探索、动手操作、猜想验证、合作交流的学习方法。教师在教学过程中引导探究,组织讨论,指导点拨,启发帮助。使教法和学法和谐地统一。
我力求体现以学生自主学习贯穿教学始终,在师生共同创造的问题情境下进行探究活动,使学生掌握平行四边形面积的计算方法。在此过程中巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。同时也培养了学生基本的动手操作能力,使其获得基本的活动体验,最终为学生形成良好的数学素养打下基础。
教学过程:
一、巧设情境,铺垫导入
师:一天,阿凡提正在卖毛毯,地主巴依走过来。一眼就看中了阿凡提的花毛毯,聪明的阿凡提拿出两块毛毯,说:“亲爱的巴依老爷,如果你能从这两块毛毯中挑出一块大的来,我就不收你的钱,可是如果您选错了,你就得答应我把欠长工的工钱都给付清,怎么样?”巴依一听不收钱,马上两眼放光,一把抓起这块长方形的毛毯,说:“这块大,我要这块!”
同学们,巴依老爷认为长方形的毛毯大,你们也来猜一猜?
生1:长方形的毛毯大。生2:平行四边形的毛毯大。生3:两个毛毯一样大。
师:想一想,我们说的毛毯的大小指的是毛毯的什么?学生讨论,得出结论:毛毯的大小指的是毛毯的面积。
师:以前我们学过哪些图形的面积?它们的计算公式又是什么呢?生:长方形的面积=长×宽
正方形的面积=边长×边长
(这一环节中部分同学会把长方形和正方形面积与周长计算公式弄混淆,我不对其进行评价,而是由学生互评)
生:用字母表示长方形面积计算公式:S=ab
用字母表示正方形面积计算公式:S=a2
(根据学生的回答进行板书)
师:要想知道阿凡提手中的毛毯到底哪一块大,就要靠大家来算一算这两个图形的面积了,你会计算哪个毛毯的面积呢?
学生讨论,小组交流,汇报结果:都会计算长方形毛毯的面积,只需要量出它的长和宽就可以了。
师:那么这个平行四边形毛毯的面积怎样求呢?要想求平行四边形的面积需要知道哪些条件呢?今天我们就来共同学习平行四边形的面积。板书课题:平行四边形面积(大家齐读课题)
二、动手操作,合作探究
(一)利用方格,初步探究
师:根据自学提示自学课本第80页,思考下列问题:
1、图中分别是什么图形?
2、图中是用什么方法来计算图形面积的?
3、用这种方法来计算图形的面积时应注意什么?
4、完成表格,说一说你有什么发现?
5、通过运用这种方法来计算图形的面积,你有什么体会?
(小组内交流,然后派代表汇报结果)
生1:图中运用了数方格的方法来计算长方形和平行四边形的面积。
生2:运用数方格的方法计算图形面积时,应注意每一小格表示1平方米,不满一格的按半格计算。
生3:图中两个图形的面积相等。
生4:图中的长方形的长和平行四边形的底相等,宽和平行四边形的高相等。生5:长×宽正好得到的是长方形的`面积,底×高得到的结果正好和平行四边形的面积相等。
生5:运用数方格的方法计算图形的面积太麻烦。
师:想一想如果我想计算出学校平行四边形花坛的面积还能用数方格的方法吗?(学生都一致认为用数方格的方法来计算较大的图形的面积很不切实际)生提出疑问:如果计算平行四边形的面积能像计算长方形、正方形面积那样有一个固定的计算公式就好了。
(二)小组合作,初步设疑
师:如果想计算平行四边形的面积,你认为需要知道哪些条件?想一想是否可以把平行四边形变成一个熟悉的图形来计算出它的面积?小组内互相交流自己的看法。(根据学生的交流和回答,结果归为两大类)
小组1:平行四边形具有不稳定性,我们可以把平行四边形拉成我们学过的长方形,因为长方形的面积=长×宽,所以平行四边形的面积也应该是用这两条边的长度相乘。
根据该小组的分析,板书——猜测1:平行四边形的面积=底×与底相邻的边小组2:通过刚才数方格的数据,我们推测平行四边形的面积正好就等于它的底×高。
根据该小组的分析,板书——猜测2:平行四边形的面积=底×高
(三)动手操作,再次探究。
师:这两种猜测到底哪一种是正确的呢?根据提示,小组合作,动手试一试。探究提示:
1、拿出手中的平行四边形框架,小组合作,在纸上描出平行四边形。
2、将平行四边形框架拉成长方形框架,放在纸上,使长方形的长和平行四边形的底边重合,再描出长方形。
3、对比平行四边形的面积和拉成的长方形的面积,说一说你有什么发现?小组汇报结果,有的认为面积增大,有的认为面积减小,也有的认为面积不变。
老师展示多媒体课件中将平行四边行拉成长方形的动画,让学生仔细观察。
拉
邻边
底
师:通过阴影部分面积的对比,你发现了什么?生1:平行四边形中阴影部分面积小一点,长方形中阴影部分面积大一点。生2:说明把平行四边形拉成长方形面积变大了。
师:既然平行四边形拉成长方形面积变大了,那么推测1中底×与底相邻的边求的是不是平行四边形的面积了?如果不是,它又是谁的面积呢?
学生讨论得出结果:底×与底相邻的边求的是长方形的面积。
师小结:把平行四边形拉成长方形以后,面积变(),平行四边形的底变成长方形的(),与底相邻的边变成了长方形的(),所以底×与底相邻的边其实就相当于长×宽,求的也就是长方形的面积。
师生共同小结:平行四边形的面积=底×与底相邻的边是错误的。师:想一想还有其他的方法把平行四边转化成长方形吗?
(四)动手操作,深入探究
1、图形转换
通过小组合作,动手操作,学生汇报结果:生1:可以把平行四边形拼成长方形。
师:你们是如何拼的?把你的步骤和大家分享一下吧!(汇报时,引导说清楚“我是沿着平行四边形的……剪开,把它拼成……形”。)根据学生的汇报,在多媒体课件中进行展示。
在学生动手操作的过程中,可能有很多种剪拼方法,教师指导学生用最简单的方法进行剪拼,并把有代表性的作品在实物展台上给大家展示,并由学生自己上台进行描述,由其他学生进行评价。
师:把平行四边形剪拼成长方形时为什么要沿着平行四边形的高剪开?生:因为长方形里有四个直角,只有沿着高剪开才能剪成长方形。
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,再次观察平行四边形剪拼成长方形的过程,小组内思考、交流:
(1)平行四边形的底与拼成的长方形的长有什么关系?
(2)平行四边形的高与拼成的长方形的宽有什么关系?(3)平行四边形的面积与拼成的长方形的面积有什么关系?
(小组讨论交流,引导学生边动手操作边观察,从中得出剪拼前平行四边形的面积、底和高分别与剪拼后的长方形的面积、长和宽相等。)
学生分小组汇报结果,其他小组进行评价,最终得出结论:这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?
生:平行四边形的面积等于底乘高。
(教师根据学生回答板书:平行四边形的面积=底×高)
师:自学课本81页,如何用字母表示平行四边形面积计算公式?生根据自学汇报结果:如果用S表示平行四边形的面积,a表示底,h表示高,用字母表示平行四边形面积计算公式S=a×h=ah(教师根据学生回答板书:S=ah)
4、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本并质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
mm大货车5m小汽车3m
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?
4厘米6厘米5厘米
厘米A、×4C、×6B、5×4D、5×6(本题旨在引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
四、归纳总结,提高认识
通过今天的学习,你有什么收获?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?在计算平行四边形面积是应注意什么?师:同学们,现在我们再次回到阿凡提卖毯的故事中,用我们今天所学的知识来判断一下到底哪个毛毯大一些?
根据课件中展示的两块毛毯的相关数据,计算出它们的面积后汇报结果。生:这两个毛毯的面积一样大。所以巴依老爷输了。
五、作业布置
课本82页3、4
《平行四边形的面积》教案设计 篇四
教学目标:
1、让学生充分利用手中的学具,在动手操作中推导平行四边形的面积公式的过程中,理解并掌握平行四边形的面积的计算方法,能正确计算平行四边形的面积。
2、让学生在操作和推导过程平行四边形面积公式的过程中,充分体验转化的数学思想,发展初步的推理能力。
3、通过活动,激发学习兴趣,培养学生思维的灵活性,逻辑性和探索精神。
教学重点:探索并掌握平行四边形面积的计算方法。
教学难点:使学生经历并理解平行四边形面积公式的推导过程和方法。
教具准备:课件、平行四边形纸片。
学具准备:三角尺、剪刀、平行四边形纸片等。
教学过程:
一、创设情境,设疑引入
出示主题图,观察两个花坛,哪一个大呢?长方形的面积已经会计算了,平行四形的面积还不会计算,这节课我们就来研究平行四边形面积计算。
二、操作探索,推导公式
(一)用数格子的方法探求平行四边形的面积
出示方格图:
请同学们用数方格的方法,数出两个图形的面积,并把表格填完整。
平行四边形在方格纸上出现了不满一格的,怎么数呢?请听老师的提示:每一个方格表示1平方米,不满一格按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
请同学们观察表格,想想发现了什么?
(二)应用转化,引入剪拼法
我们能不能把平行四边形转化成已学过的、会计算面积的图形呢?下面请大家拿出课前准备的平行四边形4人为一小组动手试一试。
1、动手操作
2、汇报交流(学生展示)
3、建立联系,推导公式。
(1)观察拼成的长方形和原来的平行四边形,你发现了什么?小组内交流讨论,围绕这几个问题讨论:
①把平行四边形转化成长方形,面积变了没有?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
( 2)引导学生推导平行四边形面积计算公式。
(3)用字母表示平行四边形的面积公式。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、实践应用,提高能力
(1)学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生读题后,自己解答。后集体订正。
我们今天学习的内容在书本81——82页,请翻开看一看。
(2)巩固提高
1、算出下面每个平行四边形的面积。(图略)
2、动物园里的小猪与小猴为计算下面这个平行四边形的面积谁对谁错发生了争执。聪明的小朋友,你能帮帮它们吗?请选择正确的算式。(单位:厘米)(图略)
小猪说它的面积可能列式为:5.5×4.4( ) 或5.5×4( )
小猴说它的面积可能列式为:4.4×5( )或4.4×4( )
3、学校有一块平行四边形花圃(如图)这个平行四边形花圃的高是多少?
4、五年级有一块平行四边形的种植园(如图),现将种植园分到各班种植管理,如果平均分给6个班,每班种植多少平方米?
5、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
(3)拓展延伸:
我县为了进一步完善城镇建设,丰富人们的文化生活,准备在少年宫广场设计建造一个面积是48平方米的平行四边形喷水池,你想当一个小设计师吗?请你帮助设计建造这个喷水池,它的底和高可能多少米?你能想出几种答案 ?
四、全课总结,畅谈收获
通过本课的学习,你们有什么收获呢?
平行四边形的面积教案 篇五
一、教学目标
1知识目标
理解平行四边形的概念;探索并掌握平行四边形的对边相等,对角相等的性质。
2能力目标
在探索过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;
3情感目标
培养学生合作交流的习惯,提高克复困难的勇气和信心。
二、教学重点、难点
教学重点:探索平行四边形的性质
教学难点:通过操作、思考、归纳出结论
三、教学方法
探索归纳法
四、教学过程
(一)创设情境,引入新课
1.(幻灯片展示)观察图片中有你熟悉的哪种图形?(平行四边形)请你举出自己身边存在的平行四边形的例子。
例如:汽车的防护链,地板砖,篱笆格子等(用幻灯打出实物的照片) 2.观察图形有什么特征?(有两组对边分别平行)
平行四边形的定义:两组对边分别平行的`四边形叫做平行四边形如图:四边形ABCD是平行四边形记作:ABCD今天我们就来探究平形四边形的性质。
(二)讲授新课
1、拼一拼(出示幻灯片)小组合作,探究新知
用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?从拼图中你能得到哪些启示?相对的边、角分别有什么关系?
(让学生实际动手操作,可分组讨论结论,用ppt课件展示)
2、学生分析总结出:平行四边形的对边平行
平行四边形的对边相等
平行四边形的对角相等
平行四边形的邻角互补
用符号语言表示:如图
小结:平行四边形的性质是证明线段相等、角相等的重要依据和方法。 3.用什么方法验证平行四边形:两组对边分别相等
两组对角分别相等
(小组讨论比一比看谁的速度最快、方法最多)
4、例题讲解
如图:小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?
解:∵四边形ABCD是平行四边形
∴AB=CD, AD=BC
∵AB=8m
∴CD=8m
又AB+BC+CD+AD=36
∴ AD=BC=10m
(三)随堂练习(幻灯片展示)
(四)感悟与收获
1.两组对边分别平行的四边形叫做平行四边形。 2.平行四边形的性质:对边平行
对边相等
对角相等
邻角互补
3.解决平行四边形的有关问题经常连结对角线转化为三角形。
(五)作业
(六)板书与设计
(见幻灯片)
数学《平行四边形的面积》教案 篇六
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的。面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
数学《平行四边形的面积》教案 篇七
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的'底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
数学《平行四边形的面积》教案 篇八
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)
平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的。过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的题目。
1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
三人行,必有我师焉。快回答为大家整理的8篇平行四边形的面积教案到这里就结束了,希望可以帮助您更好的写作平行四边形的面积教案。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。