在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?这里的10篇四年级下册《平均数》数学教案是快回答小编为您分享的平均数的相关范文,欢迎查看参考。
三年级数学《平均数》教案 篇一
《奥赛天天练》第46讲《平均数问题》。把几个不相等的同类数量,通过移多补少,使它们最终都变得完全相等,这个相等的数就叫做这几个同类数量的平均数。其基本特征是:在移多补少求平均数的过程中,几个初始数量的总和及数量的个数都保持不变。
根据问题的复杂程度这种问题被分为两类:算术平均数问题、加权平均数问题,两类问题的基本原理是一样的。本讲就要学习把简单的加权平均数转化为算术平均数来求解。解决平均数问题,需要熟练掌握以下三个主要数量关系式:
总数量÷总份数=平均数
总数量÷平均数=总份数
平均数×总份数=总数量
《奥赛天天练》第46,巩固训练,习题1
【题目】:
甲、乙两地之间的公路长30千米,一个人骑自行车从甲地到乙地去时用了2个小时,回来时由于顶风用了3小时,求他往返一次平均每小时行了多少千米?
【解析】:
问题“往返一次平均每小时行了多少千米?”中,往返的总路程相当于总数量,往返总时间相当于总份数。
往返总路程为:30×2=60(千米)
往返总时间为:3+2=5(小时)
即他用5个小时行了60千米的路程,则平均每小时行:60÷5=12(千米)。
《奥赛天天练》第46讲,巩固训练,习题2
【题目】:
小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分,问这一次是第几次测验?
【解析】:
我们可以这样假设:小明前几次数学测验都考了84分,而这次就考了100分,总体平均分是86分。题目的意思就是求在这种情况下的测验次数。
想移多补少,从100分里要移走:100-86=14(分);此前每次测验的分数都要补上:86-84=2(分)。14分里有7个2分:14÷2=7。
所以,此前测验了7次,这一次是第8次测验。
《奥赛天天练》第46讲,拓展提高,习题1
【题目】:
某一幢居民楼里原有3户安装了空调,后来又增加了一户。这4台空调全部打开时就会烧断保险丝。因此最多同时使用3台空调。这样在24小时内平均每户最多可使用空调多少小时?
【解析】:
我们假定在24小时内,有3台空调开了24小时,即始终开着,有一台空调开了0小时,即始终没开。求平均每户开多少小时,就是求这四台空调打开时间的平均数:24×3÷4=18(小时)。
《奥赛天天练》第46讲,拓展提高,习题2
【题目】:
有甲、乙、丙3个数,甲、乙两数的和是90,甲、丙两数的和是82,乙、丙两数的和是86。甲、乙、丙3个数的平均数是多少?
【解析】:
分别用□、△、○代表甲、乙、丙三个数,由题意可得:□+△=90;□+○=82;△+○=86。
所以:(□+△)+(□+○)+(△+○)=90+82+86=258,
即:(□+△+○)×2=258,
则甲、乙、丙三个数的和为:258÷2=129,
所以甲、乙、丙3个数的平均数是:129÷3=43。
《平均数》教案 篇二
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。
重难点:
重点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数代表总体水平
总数÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
《平均数》教案 篇三
一、教学目标
(一)教学知识点
1、会求加权平均数,并体会权的差异对结果的影响、
2、理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题、
(二)能力训练要求
1、通过利用平均数解决实际问题,发展学生的数学应用能力、
2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维、
(三)情感与价值观要求
通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心、
√快回答★www.kuaihuida.com√二、教学重点
1、会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性、
2、探索算术平均数和加权平均数的联系和区别、
三、教学难点
探索算术平均数和加权平均数的联系和区别、
四、教学方法
探讨式教学、
五、教具准备
投影片三张:
第一张:补充练习(记作8、1、2 A);
第二张:补充练习(记作8、1、2 B);
第三张:补充练习(记作8、1、2 C)、
六、教学过程
Ⅰ、创设问题情境,导入新课
在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数、本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别、
Ⅱ、讲授新课
1、例题讲解
某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面、
平均数教学设计 篇四
教学内容:本课内容是人教版义务教育课程标准实验教科书四年级下册90页的内容。
学习目标分析:
1、认知目标:在具体问题情境中,感受求平均数是解决一些实际问题的需要,理解平均数的意义,初步学会简单的求平均数的方法。
2、能力目标:能运用平均数的知识解释简单的生活现象,解决简单的实际问题。积累分析和处理数据的方法,发展统计观念。
3、情感目标:增强与同伴交流的意识与能力,体会平均数在生活中的实际应用,积累学习数学的情感。
教学重、难点:
本节课的教学重点是理解平均数的含义和简单求平均数的方法。根据教材内容特点并结合四年级学生的认知基础,我将本课的教学难点定为:理解平均数在统计学上的意义和作用。
教学资源与工具设计
多媒体课件
教学过程
一、创设情景导入新课
1、 李明和王小飞两位同学要进行篮球的定点投篮比赛。
(课件出示)比赛规则:每人各进行3次1分钟的定点投篮,以每次投中个数为成绩。
(课件出示)比赛成绩统计图:
观察,你从统计图中知道了什么?
问题:谁赢了?为什么?
2、 王小飞再投一次,(课件出示成绩统计图)
问题:现在谁赢了?为什么?
发现问题:次数不同,比总数不公平。从而引出新课
二、新知探究
(一)、认识平均数
1、合作讨论
讨论问题:次数不同,比总数不公平时,该怎样比才公平?
2、 探索求平均数的方法
想一想:(以李明三次投球为例)能计算出李明三次投球成绩的平均数吗?
教师适时板书:(7+3+8)÷3
=18÷3
=6(个)
问题:(1)、“6”是哪几个数的。平均数?
(2)、我们是怎样求出7、3、8这三个数的平均数的?
小结方法:先求和再平分。
3、理解平均数的意义
(1)、引导:不计算,有办法找到李明三次投球成绩的平均数吗?
小组讨论
根据学生回答,课件出示移动变化的过程和结果。
说一说:根据刚才以多补少找平均数的过程,说说你对平均数的理解。
想一想:“6”表示的是李明三次都投中6个球吗?“6”表示什么?
在学生回答的基础上引导学生理解平均数的含义,认识平均数的特征。
3、 即时练习
学生独立完成求王小飞平均每次投中球的数量。
组织汇报,交流方法
结论:通过比较平均数,谁赢了?
通过这次比赛的经历,你有什么感受或体会?
4、 沟通平均数与生活的联系
想一想:在平时的生活中,你们见过平均数吗?
三、联系实际,拓展应用
1、判断下列说法正确吗?为什么?
(1)、不会游泳的小明身高140cm,他要到平均水深110cm的河里游泳不会有危险。
(2)、小明家去年4个季度的用水量分别是16吨、24吨、35吨、21吨。小明家平均每月用水量是(16+24+35+21)÷4=24(吨)。
2、你能想办法求出他的语文成绩吗?
(1)、先估测一下:语文成绩可能是多少?
(2)、同桌合作讨论。语文成绩究竟是多少?
四、拓展延伸
我校的舞蹈队参加市舞蹈比赛,评委亮分96、91、95、96、84、99、97,算一算,我校舞蹈队的最后所得平均分是多少?
激发认知矛盾:平均分是94分,可评委却宣布最后得分是95分。这是为什么?
师:请孩子们带着这个问题下课后自己去寻找答案。
板书设计:
求平均数 篇五
平均数
教学目标:
1、结合统计的具体事例理解平均数的意义,会求简单的平均数。
2、能从各种信息中,发现并提出平均数问题,并探索的方法。
3、体会平均数在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。
4、体验平均数在描述事物时存在状态方面的优越性。对学生进行教育。
教学重难点:
理解和掌握的方法,理解平均数的意义。
教学关键:
通过实践活动使学生感悟平均数的含义,从而更好地掌握的多种方法,并能灵活应用,解决实际问题。
教学具准备:
红旗和黄旗各一面、课件、三个笔筒(21支铅笔)、乒乓球拍和乒乓球等。
教学设计:
本节课的教学脉络按“平均数”(数学概念)——(计算方法)——应用题(实际应用)逐步展开。
活动环节
教师活动
学生活动
设计意图
掂球比赛
引出争论
看!老师给你们带来了什么?高兴吗?像老师这样掂球你会吗?
好今天红队和黄队来比一比谁掂得多,有信心吗?
各队赶快推选出自己乒乓能手上台来!
谁愿意当裁判来数一数?
老师把大家的成绩统计在黑板上,请各裁判汇报!
看看比赛成绩哪个队获胜了呢?
…看来不能以某一个孩子的成绩来比;
…看来也不能以总成绩来比;
怎么办呢?通过本节课的探究,我们就能解决评优的问题。
裁判选手各就各位
掂球比赛
各裁判汇报成绩
大家发表自己的看法
创造性地使用教材,通过学生喜欢的体育运动到评选优胜小队,学生都乐于其中,所提的问题与已学知识构成矛盾,激发了学生的探究欲望。
笔筒分笔
方法渗透
老师先考考大家:怎样使这三个笔筒里的笔同样多呢?
…我们给这种方法取个名字叫“移多补少” ;
难道只有这种办法吗?
…老师给你的办法取个名字叫“先合后分”。
两种方法都可以知道平均每个笔筒里的笔有7支。
…同学们用了两种方法使笔筒里面的笔同样多,真聪明!
学生上台实际操作,同时说说过程。
通过简单的,具体生动的笔筒分笔,让每一个孩子初步体会到“移多补少” “先合后分”能使几种东西同样多。
学习例题
新知建构
1、出示例题。在废品回收活动中,四个小朋友上交的矿泉水瓶如图:
你获得的哪些数学信息?…你能提出什么数学问题?…
2、要求平均每个人收集了多少个?也就是要使每个小朋友收集的矿泉水瓶同样多,怎么办?…
3、学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。
4、谁能用算式表示出刚才“先合后分”的过程?…引导孩子说出用瓶子总的个数除以人数。
5、
6、小结。刚才孩子门用了两种方法都可以知道平均每个人收集了13个(课件演示统计表),这13个是小红收集的吗?是小兰收集的吗?是小美收集的吗?那这个“13”是个什么数呢?对,这个“13”就是这四个小朋友收集的平均数,同学们注意观察,这个平均数“13”与这四个小朋友实际收集的个数相比,你发现了什么?在全班交流…是呀,这个平均数13并不代表实际每个孩子收集的,而是反映的四个小朋友收集的整体水平,它比最多的15个少,比最少的11个多,是处于中间的一个平均水平。
学生汇报所获信息。
学生提出数学问题。
学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。
学生根据演示列出算式,
学生认真观察,分析平均数“13”的特点,各抒己见。
在学生体验了两种方法之后,探索的方法,感悟平均数的实际意义,用数学算式抽象出操作过程,使在浓厚的学习兴趣中,积极动手操作,动脑思考,呈现了知识的产生——发展——初步完善的过程。
评选优胜
运用新知
现在你们能用刚才所学的知识来解决“评优”问题了吗?怎么评呢?…
两个队交换计算平均数。
用平均数来评价两个队的成绩,现在大家觉得公平了吗?你是怎么认识平均数的?它有什么好处呢?…启发孩子明白平均数能较好地反映一组数据的整体水平。
是呀,平均数的作用真大,在日常生活中经常会用到它。
两个队交换计算平均数
评选优胜队
谈谈对平均数的理解。
首尾呼应,突出了孩子的主体地位,真正让孩子体验感悟平均数的优越性。
新知拓展
总结提升
1、教材44页第2题。气温。
2、平均数论坛。
(1)游泳池平均水深120厘米,小雪说:“我有142厘米,不会有危险的!”她说得对吗?
(2)数学故事:小陈应聘,他受骗了吗?公司员工平均月工资2000元,怎么理解呢?
3、小会计师。
4、教材45页第4题。
5、总结
记录本地一周的最高气温和最低气温,并算出平均最高气温和最低气温。
学生讨论交流
帮银河之星大擂台的选手算分。
(1)甲、乙两种饼干的平均月销售量谁多?多多少?(2)分析一下乙种饼干的销售量越来越大的原因。(3)如果你是该公司的老板你会怎么做?
三年级数学《平均数》教案 篇六
一.目标和目标解析
1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数。教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题。2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度。3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性。通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性。
二.教学过程设计
活动一:创设情景,建立模型,揭示概念
问题
1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义。 在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:
(1)谈谈表格中“86分”所反映的实际意义。
(2)求这两个班的平均成绩,并和同伴交流你的计算方法。
预设:问题(2)可能会出现下面两种解法:
引导学生对比、分析、讨论,初步理解权的意义。设计目的:
问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义。
问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫。
活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维。本活动中,教师应关注学生:
①参与数学活动的主动性和数学思维的深刻性;
②实际问题中体验平均数的统计意义和初步了解权的意义;
③体会算术平均数与加权平均数的区别与联系。
学生归纳:
1.平均数反映的是数据的平均水平,;
2.“权”反映了数据的相对“重要程度”;
3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数。问题2 某市三个郊县的人数与人均耕地面积如下表:
求这个市三个郊县的人均耕地面积 (精确到0.01公顷).
追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?
追问2: 0.
15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?
设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系。活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法。学生归纳:
(1)上例中15,7,10分别是0.
15、0.
21、0.18三个数据的权,平均数0.17称为三个数0.
15、0.
21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平。
(2)若已知n个数及其对应的权,则这n个数的加权平均数可求。活动二:实例分析,指导应用,体验概念
1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数。思考:各项的权分别是多少?如何计算植树的平均棵树?
2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:
(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?
问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?
设计意图:在变式中理解权的含义。
问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识。
设计意图:在系统中整体理解数据、权和平均数。通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响。此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用。
问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?
设计意图:进一步体会数据权的不同表现形式。 (自主合作,共同比较,交流分析,体会权的“掌控”能力。)
活动三:拓展创新,我来决策,感悟概念 一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
假如你是该公司老总,请发挥你的才智,给每项成绩赋予适当的权数,并通过计算进行选拔。设计目的:创设情景,为学生创造参与数学活动的机会,亲身经历数学活动的过程,积累数学经验,在感受数学知识的同时获得成功的体验,强化数学的应用意识,增强学数学的积极性和热情;借助于Excel的数据处理功能,展示不同的权数下的不同结果,深入体会权的意义和作用。活动方式:猜想──设计──计算──体会──交流。
活动四:归纳小结,自主反思,优化概念
1.从下面的关键词中任选一个或几个,展示自己的演说才能,谈谈你本节课的收获或体会:
知识、方法、反思、猜想、交流、愉快、困惑、生活
2.布置作业:教科书P127页,练习第1题、第2题。设计目的:通过回顾和反思,让学生对数据的权的作用和加权平均数的意义有进一步的认识和理解,通过学生归纳和教师释疑,让学生优化概念、内化知识,同时让学生看到自己的进步,增强学生运用数学解决实际问题的信心,促进形成良好的心理品质。活动方式:反思学习过程,归纳并形成知识体系,交流体会和感受。三.目标检测设计(时间:15分钟;满分50分)
(一)填空题:(每题5分,共20分)
1.在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分。则这5名同学的平均成绩:= .
2.某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩:= .
3.从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤 元.
4.若m个数的平均数是a,n个数的平均数是b,则这m+n个数的平均数是 .
(二)解答题:
5.(20分)某市去年7月下旬各天的最高气温统计如下:
(1) 计算该市七月下旬的平均气温。(5分) (2) (1)中所得到的平均数叫做
35、
34、
33、
32、28这5个数的 平均数。(5分)
(3) 在上面的5个数据中,35的权是 ,34的权是 ,28的权是 .(5分)
(4) 如果把35和28的权调换一下,平均气温是多少?与(1)的计算结果相比较发生了怎样的变化?由此你认为权在实际问题中的重要意义是什么?(10分)
6.(10分)某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验。小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分。(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?
(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少?
《平均数》教案 篇七
1、体悟“平均数”的实际意义。
2、探索求“平均数”的多种方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。
4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索 与合作交流的意识和能力。
教学重点:
灵活选用求平均数的方法解决实际问题。
教学难点:
理解平均数的意义。
教学关键:
通过动手操作的实践活动使学生感悟平均数的含义,从而更好地掌握求平均数的多种方法,并能灵活应用,解决实际问题。
教学过程:
本节课的教学脉络按“平均数”(数学概念)——“求平均数”(计算方法)——“应用题”(实际应用)逐步展开。主要分以下几个层次:
第一层次:谈话引入(让学生初步感知什么是平均数)
①学生交流课前收集到的有关平均数的信息。
②师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?
③师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。(板书:平均数)你想了解平均数的哪些知识呢?
④师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。
说明:理解平均数的意义是教学求平均数的重要基础。引入新课之前,先让学生说说他们自己收集到的有关平均数的信息。调查学生对“平均工资”、“平均年龄”、“人均住房面积”……
这些已经抽象了的平均数的理解情况,为新课教学做好铺垫。接着创设富有童趣的情境,运用现代教学媒体,激发学生主动探求知识的愿望,从而引出求平均数的课题。
第二层次:构建新知
1、理解含义,探求方法。
① 观察棋子,提出问题。(多媒体显示)
师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?
说明:让学生同桌合作,用军旗作为操作活动的材料。学生通过观察、思考,自己提出问题,然后解决问题,极大地激发了学生探索的热情。
②感悟“平均数”的实际意义。
动手操作:以小组为单位研究怎样才能使三排棋子同样多。
师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?
这个平均数4与原来每排棋子的个数有什么关系呢?
说明:通过任意一种移动方法,使三排棋子同样多。从而揭示平均数的真正含义。让学生深刻理解,平均数并不表示一个实际存在的数量。精心设计学具操作,并配以恰当的媒体显示,突出了平均数那简明、直观的特点。
2、探索求平均数的不同方法。
师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!
①小组活动讨论。
②汇报交流。(生说方法多媒体显示棋子移动过程)
移多补少! 先假设后均分。先求和再均分。
说明:在学生感悟平均数的实际意义后,探索求平均数的不同方法。用数学算式概括操作过程,并且让自己给方法命名。使学生在浓厚的学习兴趣中,积极动手操作,动脑思考。在汇报交流中相互启发,最后共同探讨出2、7、3这三个数的平均数的几种方法。体现了“小组合作交流——大组交流汇总”的自主探究模式。呈现了知识的产生——发展——初步完善的过程。突出了学生的主体地位,符合创新教育要求。
第三层次:初步应用,内化拓展。
师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?
第四层次:实际应用
选择正确的算式:
前几天,学校举行了献爱心活动,我们班52名同学分成4组,第1组捐款192元,第2组捐款212元,第3组捐款205元,第4组捐款 198元,平均每组捐款多少元?
A: (195+212+205+198)÷52=16(元)
B: (195+212+205+198)÷4=208(元)
①说说你选择B的理由。
②小明从结果16元他就肯定A 是错误的,你知道这是为什么吗?
③如果选A该怎样提问?
④比较这2个问题的异同点?
小结:所以求平均数时你要找准对应关系。说明:从实际生活中提取素材,设计两道对比练习题,进一步加深了学生对求平均数方法的理解应用,在应用中渗透对应思想。另外,结合题目的特点有机对学生进行思想教育。
平均数 篇八
教学目标:
1、使学生理解的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?
二、学习计算平均数
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、巩固训练
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?
2、根据统计表算一算,三年段平均每班踢几下?
班级三(1)三(2)三(3)三(4)
踢的次数632654668646
四、小结:通过这节课的学习,你们有什么收获,还有什么问题?
五、布置作业:练习十一1、2、3
《平均数》教案 篇九
教学目标:
1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)
2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。
3.操作、交流的过程中,建立学习数学的信心,发展统计观念。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
学具准备:
移动学具板 、作业纸
教具准备:
移动示范板 、 课件
教学过程:
一、放情景录像,预设认知冲突
1.谈话导入、回顾情景。
2.读懂统计图,获取相关信息
从这两幅图中你能知道哪些信息?
3.提出预设问题
这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?
二、自主探索方法,理解平均数的意义
1.引起争议,探求公正的策略
当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?
2.萌发求平均数的需求,得出有效途径求平均成绩
3.小组动手操作,探索求平均数的方法
那我们应该怎样求男生、女生各组的平均成绩呢?
4.全班交流,感知方法
(1)移多补少
(2)一般方法
男生:6+9+7+6=28(个) 284=7(个)
女生:10+4+7+5+4=30(个) 305=6(个)
男生组算式中的9、6、7、6和28各代表什么呢 ?
为什么女生求出的总数30除以5,而不是除以4呢?
5.理解平均数的意义
我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?
小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。
6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一
三、感受平均数与生活的联系,体会平均数的作用
平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。
1.盐城去年全年平均气温在18摄氏度。
2.盐城市某小学三年级有10个班,平均每班人数为47人。
3.小明的语、数、外,三门考试,平均成绩为92分。
4.盐城市某小学三( 5 )班同学平均年龄为8岁。
现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!
四、巩固强化,拓展应用
1.移铅笔 (93页第1题)
目的:体会移多补少的思想,加深对平均数意义的理解。
2.三条丝带的平均长度 (94页第2题)
目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。
3.辨析题(第94页 第3题)
目的:加深理解平均数的意义
4.综合性训练:
目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。
五、全课总结(略)
《平均数》教案 篇十
教学目标:
1、算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。
2、体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。
教学重点:
会求一组数据的算术平均数和加权平均数。
教学难点:
体会平均数在不同情境中的应用。
教学方法:
引导-讨论-交流。
教学手段:
多媒体
教学过程:
创设情景,引入新课(出示篮球比赛的一些画面)
在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?
上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?
活动1:前后桌四人交流。
找同学回答后,给出算术平均数的定义。
一般地,对于n个数x1,x2,…,xn我们把
叫做这个n数的算术平均数,简称平均数,记为 。读作“x拔”。
活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?
想一想:
小明是这样计算东方大鲨鱼队的平均年龄的:
年龄/岁 16 18 21 23 24 26 29 34
相应队员数 1 2 4 1 3 1 2 1
平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23。3(岁)
你能说说小明这样做的道理吗?找同学回答。
巩固练习一:
1。 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下:(单位:元)
10,12,13。5,21,40。8,19。5,20。8,25,16,30。
这10名同学平均捐款 元。(课本P216随堂练习 1)
2。一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0。1)
3。小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?
A 93分 B 95分 C 92。5分 D 94分
例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:
测试项目 测试成绩
A B C
创新 72; 85; 67
综合知识 50; 74; 70
语言 88; 45; 67
(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?
(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?
解:(1)A的平均成绩为 (分)。
B的平均成绩为 (分)。
C的平均成绩为 (分)。
因此候选人A将被录用。
(2)根据题意,3人的测试成绩如下:
A的测试成绩为 (分)
B的测试成绩为 (分)
C的测试成绩为 (分)
因此候选人B将被录用。
思考:(1)(2)的结果不一样说明了什么?
实际问题中,一组数据里的各个数据的“重要程度”未必相同。因此,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称
为A的三项测试成绩的加权平均数。
巩固练习二:
1、某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?
变形训练:(小组交流)
1、甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;
2、某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16。5,18,18。5。如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 。
小结:先由学生总结,教师再补充。通过本节的学习,我们掌握了:1。算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。2。体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题。
布置书面作业:课本P216习题8。1 1、2
课外作业:(两题任选一题)
1、到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数。
2、请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化。观察“权”的变化对结果的影响。
板书设计
1、平均数
算术平均数:
对于n个数x1,x2,…xn我们把
叫做这个n数的算术平均数,简称平均数,记为 。
读作“x拔”
例1解:(1)A的平均成绩为
B的平均成绩为 。
C的平均成绩为 。
因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:
A的测试成绩为 (分)
B的测试成绩为 (分)
C的测试成绩为 (分)
因此候选人B将被录用。
加权平均数:称
为A的三项测试成绩的加权平均数。
读书破万卷,下笔如有神。上面就是快回答给大家整理的10篇四年级下册《平均数》数学教案,希望可以加深您对于写作平均数的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。