1. 主页 > 知识大全 >

二次函数教案优秀5篇(二次函数优秀教学设计)

作为一名辛苦耕耘的教育工作者,时常需要编写教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?为了加深您对于二次函数的写作认知,下面快回答给大家整理了5篇二次函数教案,欢迎您的阅读与参考。

次函数教案 篇一

教学目标:

1、经历描点法画函数图像的过程;

2、学会观察、归纳、概括函数图像的特征;

3、掌握 型二次函数图像的特征;

4、经历从特殊到一般的认识过程,学会合情推理。

教学重点:

型二次函数图像的描绘和图像特征的归纳

教学难点:

选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

教学设计:

一、回顾知识

前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)

引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。

板书课题:二次函数 ( )图像

二、探索图像

1、 用描点法画出二次函数 和 图像

(1) 列表

引导学生观察上表,思考一下问题:

①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?

②当x取 等互为相反数时,对应的y的值有什么特征?

(2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).

(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到 和 的图像。

2、 练习:在同一直角坐标系中画出二次函数 和 的图像。

学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)

3、二次函数 ( )的图像

由上面的四个函数图像概括出:

(1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,

(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。

(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。

(4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。

(最好是用几何画板演示,让学生加深理解与记忆)

三、课堂练习

观察二次函数 和 的图像

(1) 填空:

抛物线

顶点坐标

对称轴

位 置

开口方向

(2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?

(抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)

四、例题讲解

例题:已知二次函数 ( )的图像经过点(-2,-3)。

(1) 求a 的值,并写出这个二次函数的解析式。

(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。

练习:(1)课本第31页课内练习第2题。

(2) 已知抛物线y=ax2经过点a(-2,-8)。

(1)求此抛物线的函数解析式;

(2)判断点b(-1,- 4)是否在此抛物线上。

次函数教案 篇二

二次函数的图象与性质

1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。

2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)=3x2+2x;

(2)=-x2-2x

( 3)=-2x2+8x-8 (4)=12x2-4x+3

板书设计

1、画函数=ax2+bx+c(a≠0)的图象。

(列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)

2、二次函数=ax2+bx+c(a≠0),

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

(最值与抛物线的开口方向及顶点的纵坐标有关。)

课后反思

在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数 是由 如何平移得来,并熟练掌握二次函数 图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。

二次函数教案 篇三

一、教材分析:

《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时

二、教学目标:

知识技能:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.能够利用二次函数的图象求一元二次方程的近似根。

数学思考:

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

解决问题:

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

情感态度:

1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

三、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

四、教学方法:启发引导 合作交流

五:教具、学具:课件

六、教学过程:

[活动1] 检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解。

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2] 创设情境 探究新知

问题

1. 课本P94 问题。

2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

3. 结合预习题1,完成课本P94 观察中的题目。

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3] 例题学习巩固提高

问题

例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4] 练习反馈 巩固新知

二次函数教案 篇四

一、重视每一堂复习课

数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

二、重视每一个学生

学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求

三、做好课外与学生的沟通

学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点

四、要多了解学生

你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二次函数教案 篇五

一、由实际问题探索二次函数

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量

(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?

(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产 量

y=(100+z)(6005x)=-5x2+100x+ 60000.

二、想一想

在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?

我们可以列表 表示橙子的总产量随橙子树的增加而变化情况。你能根据 表格中的数据作出猜测吗 ?自己试一试。

x/棵

y/个

三。做一做

银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量。在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利 息自动按一年定期储蓄转存。 如 果存款额是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税).

四、二次函数的定义

一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)

注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为 零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子。

随堂练习

1.下列函数中(x,t是自变量),哪些是二次 函数?

y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t

2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.

(1)写出y与x之间的关系表达式;

(2)当圆的半径分别增加lcm、 ㎝、2㎝时,圆的面积增加多少?

五、课时小结

1. 经历探索和表 示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。

六、活动与探究

若 是二次函数,求m的值。

七、作业

习题2.1

1.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t , 填 表表示物体在前5s下落的高度:

t/s 1 2 3 4 5

h/m

⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。

(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?

(2) 如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?

书中自有黄金屋,书中自有颜如玉。以上这5篇二次函数教案是来自于快回答的二次函数的相关范文,希望能有给予您一定的启发。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。