1. 主页 > 知识大全 >

七年级数学下册的教案简洁优秀6篇(沪科版七年级下册数学实数教案)

很多同学在学习中习惯于跟着老师一节一节的走,一章一章的学,不太对意章节与学科整体系统之间的关系,只见树木,不见森林。下面的6篇七年级数学下册的教案简洁是由快回答精心整理的七年级下册数学范文模板,欢迎阅读参考。

七年级数学下册教学设计 篇一

教学目标:

1.会用代入法解二元一次方程组。

2.初步体会解二元一次方程组的基本思想――“消元”。

3.通过研究解决问题的方法,培养学生合作交流意识与探究精神。

重点:

用代入消元法解二元一次方程组。

难点:

探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程:

复习提问:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?

解:设这个队胜x场,根据题意得

解得

x=18

则 20-x=2

答:这个队胜18场,负2场。

新课:

在上述问题中,我们可以设出两个未知数,列出二元一次方程组

设胜的场数是x,负的场数是y,

x+y=20

2x+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程

2x+y=38的y换为20-x,这个方程就化为一元一次方程。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

归纳:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

例1 把下列方程写成用含x的式子表示y的形式:

(1)2x-y=3 (2)3x+y-1=0

例2 用代入法解方程组

x-y=3 ①

3x-8y=14 ②

例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。

(3)解所得到的一元一次方程,求得一个未知数的值。

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

作业:

教科书第98页第3题

第4题

七年级数学下册教学设计 篇二

教学目标

1.会用代入法解二元一次方程组;

2.体会解二元一次方程组的 “消元思想”和“化未知数为已知”的化归思想。

3.通过对方程中未知数特点的观察和分析明,确解二元一次方程组的主要思路 是 “消元思想”和“化二元为一元”的化归思想。

教学重难点

1.熟练的用代入法解二元一次方程组。

2.探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程

一、创设问题,引入新课

1.问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜、负场数分别是多少?

解:设胜场数是x则负的场数是20-x 列方程为:2x+(20-x)=38.解得x=18,则负的场数为

20-x=20-18=2

2.问题2:在上述问题中,我们可以设出两个未知数,列出二元一次方程组,若设胜的场数是x,负的场数是y,则

x+y=20

2x+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系呢?

设计意图:通过创设同一问题分别列出一元一次方程与二元一次方程组 ,引导学生对两者关联认识,为后续代入消元法解二元一次方程作铺垫。

二、学生探索,尝试解决

交流问题2:可以发现,二元一次方程组中第一个方程x+y=20可的到y=20-x,将第2个方程2x+y=38中y换为20-x,这个方程就化为一元一次方程2x+(20-x)=38.

归纳:

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想。

归纳小结:上面的解法,是把二元一次方程组中一个方程中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的 解。这种方法叫做代入消元法,简称代入法。

设计意图:通过交流问题2,引导学生将心中所想显现出来,代入消元法的步骤和功效逐步显现出来。

三、典例交流,揭示规律

例1:用代入法解二元一次方程组x=y+3(1)

3x-8y=14(2)

解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

所以这个方程组的解是 x=2,

y=-1

思考下列问题

(1)选择哪个方程代入另一个方程?目的是什么?

(2)为什么能代入?目的达到了吗?

(3)只求出 y=-1 ,方程组解完了吗? 把y=-1 代入哪个方程求x的值较简单?

(4)怎样知道你运算的结果是否正确?

反思:需检验,将 x=2,y=-1分别代入方程①②,看方程的左右两边是否相等,可以口算,也可以在 草稿纸上验算。【例2】用代入法解二元一次方程组x-y=3(1)

3x-8y=14(2)

思考:

(1)例1与例2有什么不同?(例1是用①直接代入②的,而例2的两个方程都不具备这样的条件。)

(2)如何变形?(把其中一个方程变形为例1中①的形式。)

(3)选择哪个方程变形较简单?(方程①中的x的系数为1,故可以将方程①变形得x=3+y.)

(学生口述,教师板书完成)

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。(变)

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。(代)

(3)解所得到的一元一次方程,求得一个未知数的值。(求)

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。(解)

设计意图:进一步加强利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步骤提高学生的分析能力。

四、变式训练,深化提高

用代入法解下面方程组

设计意图:通过学生演练展示,帮助学生巩固用代入法解二元一次方程组的步骤。

五、师生共进,反思小结1、本节主要学习用代入法解二元一次方程组

2、主要的解题思想方法是消元思想。

3、代入消元法解二元一次方程组需要注意的问题。

(1)用代入法解二元一次方程组时,常选用系数比较简单的方程变形,这有利于正确、简捷地消元。

(2)由一个方程变形得到的只含有一个未知数的代数式必须代入到另一个方程中去,否则会出现一个恒等式。

(3)方程组解的表示方法,应该用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?

六、布置作业:

习题8.2 1,2题

七、板书设计

七年级数学下册教学设计 篇三

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

七年级数学下册教案 篇四

教学目标:

知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

能力目标:进一步培养学生分析、归纳和探索能力。

情感目标:培养学生数形结合的思想。

教学重难点:公式的应用及推广。

教学过程:

一、复习提问:

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,

这样裁开后才能重新拼成一个矩形。

(3)比较(1)(2)的结果,你能验证平方差公式吗?

学生讨论,自己得出结果

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

3.判断正误:

(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

二、新课:

运用平方差公式计算:

(1)102×98;(2)(y+2)(y2)(y2+4).

填空:

(1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

七年级数学下册教学设计 篇五

一、合理安排小组合作学习的时间

“合作时间”的安排是小组合作学习的关键,只有合理的时间安排才能使整个合作学习过程不趋于形式,进而收获成效。对于小组合作学习来说,学习的时间的长短应根据教学内容而定,教师可以把一节课或者几节课的时间用来进行小组合作学习,让学生在合作式探索和相互学习中更深入理解课本知识,或者在课堂内让学生对某个问题进行短时间的辩论思考。在这个过程中,最重要的一点是要使学生的思维活动得到充分的表达,让学生在每次合作学习过程中有充足的时间去独立思考、发表个人意见以及对问题进行相互讨论。同时,教师需要密切关注各小组情况,引导学生进行课内外的合作延伸,并对部分有学习困难的小组实施及时的帮助。

二、合理设计问题

教师在课堂中提出的问题不应过于简单,简单的问题虽然看起来能使课堂气氛活跃,但时间久了会培养学生的思维惰性,设计的问题应能够促进学生动脑,有利于集体探究、促进合作,引导他们主动探究数学知识。比如在上《三角形中位线》这一课程时,根据学生反馈,像“什么是三角形的中位线?一个三角形有多少条中位线?中位线和中线有什么区别?如何证明三角形中位线定理?”问题的前面部分学生能够很轻松地理解和掌握,但他们对课本上关于这个定理的证明思路及方法是陌生而疑惑的这个时候不需要急着去向学生解释,应该让班上同学提出他们的问题,针对问题的要害来进行适当的点拨,让他们发挥集体智慧再进行讨论,进而通过合作来解决问题。

三、教师角色扮演

在小组合作学习过程中,教师作为学生学习的向导及促进者,甚至是学习合作者,其主要的行为表现就是交流、倾听、分享、办作,他们在合作学习过程中同时扮演顾问、权威和同伴三种角色,学生学习方式的转变是通过教师角色的变化实现。教师需要注意每个学生的参与度,根据不同班级和小组的特定情况,教师应当使用恰当的语言对学生的学习过程进行指导和评价,使各问题的形成和解决过程得到充分的展示,使互动过程达到高效的目的

四、对小组合作学习进行恰当评价

小组合作学习总的评价标准是小组的成就,其表现主要分为两个方面:

①对学生学业方面的进步做出评价;

②对小组的工作以及合作情况做出评价。小组评价标准需要在进行小组合作学习开始的时候就已明确,小组评价标准是一个十分重要的前提条件,小组合作任务不同则标准可以不同,要求越具体就越能使学生明确所要达到的目标,越有利于提高学习效率。以下案例可以说明这个问题:

案例1

在“整式”教学过程中教师提出了如下评价标准:达标:小组内每个成员都积极参与。良好:组内成员均积极合作、互帮互助,实现了真正的合作。优秀:组内每个成员学会了知识的同时还发展了能力。

案例2

老师和同学在二次函数3种表示的教学过程中共同制定标准:a.三人一组,由老师随机抽査。b.由老师决定被抽到小组的哪位成员选择相应表示方式。c.每人用一种表示来轮流完成某一函数的3种表示方式。d.组内成员均表示正确且合理的小组为优秀。由以上两个案例可以看出,第一个案例的小组评价分了几个等级,但并没有表述出很强的操作性,真正参与和真正合作的定义不明,缺少具体的行为目标,在实施过程中会导致偏差的出现。

五、结束语

小组合作学习的教学方式要重视小组合作的实效,避免形式主义,并不是场面热闹就能促进学习效率。这种全新的学习和教学方式的目的是使学生在学习方式上得到转变,自身素质得到全面发展,该方式的推广需要广大教师积极探索、不断创新。

七年级数学下册教学设计 篇六

教学目标

掌握幂的乘方法则,并能够运用法则进行计算。

会进行简单的幂的混合运算。

在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

幂的乘方法则的运用。

难点

幂的乘方法则的推导以及幂的混合运算。

教学过程

一、复习导入

1.表示什么意义?表示什么意思呢?

2.同底数幂乘法法则是什么,它是怎样推导的?

通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?

二、新课讲解

探究新知

1.思考:

①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?

②你能说出、的意义吗?

③请你计算、,并想一想每一步计算的依据是什么?

(鼓励学生站起来回答,培养学生数学表达的能力)

2.发现:

①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?

②验证猜想,得出结论

===(m,n都是正整数)

用语言叙述为:幂的乘方,底数不变,指数相乘。

三、典例剖析

例1计算:

(1);(2);(3)(m是正整数);(4)(n是正整数)

要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。

例2计算:

学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。

四、课堂练习

基础练习

1.填空:

(1);(2);

2.下面的计算对不对?如果不对,应怎样改正?

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。

提高训练:

3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?

引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。

4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。

学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。

5.已知,求的值。

逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。

五、小结

师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

1.P40第2题

2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。

学而不思则罔,思而不学则殆。快回答为大家分享的6篇七年级数学下册的教案简洁就到这里了,希望在七年级下册数学的写作方面给予您相应的帮助。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。