1. 主页 > 知识大全 >

比的意义教案(优秀9篇)(比的意义ppt课件)

作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?为了让您对于比的意义教案的写作了解的更为全面,下面快回答给大家分享了9篇比的意义教案,希望可以给予您一定的参考与启发。

比的意义教案 篇一

教学目标

知识目标:理解比例的意义。

技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。

情感目标:使学生初步感知事物间是相互联系、变化发展的。

教学重难点

重点:理解比例的意义。

难点:判断两个比能否组成比例。

教学工具

多媒体课件

教学过程

一、新课导入

请同学们回忆一下比的知识,比的前项、后项和比值。

二、教学过程

1.比例的意义

(1)出示P40例1

操场上和教室里两面国旗的。长和宽的比值有什么关系?

2.4∶1.6=3∶2

60∶40=3∶2

2.4∶1.6=60∶40

象这样表示两个比相等的式子叫做比例。

比例也可以写成:=

做一做

1、下面那组中的两个比可以组成比例?把组成的比例写出来。

(1)6∶10和9∶15 (2)20∶5和1∶4

(3) ∶和6∶4 (4)0.6∶0.2和∶

答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

(4)0.6∶0.2=3∶2 ∶ =3∶1

所以,只有第一组可以组成比例为6∶10=9∶15

2、用图中4个数据可以组成多少比例?

答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

全课小结

通过这节课,我们学到了什么知识?什么是比例?

拓展延伸

用8、12四个数分别作为比例的项,你能组成几个比例?

课后小结

通过这节课,我们学到了什么知识?什么是比例?

课后习题

一、填空

1、( )叫做比例。

2、两个比的( )相等,这两个比就相等。

3、把6×8=24×2改写成四个比例。

4、把7m=8n改写成四个比例。

5、根据8×9=3×24,写出比例( )

6、如果7a=6b,那么a:b=( ):( )。

7、如果9a=5b,那么b:a=( ):( )。

二、选择

1、下面的比中能与3∶8组成比例的是( )。

A.3.5∶6 B.1.5∶4 C.6∶1.5

2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。

A.9:5 B.5:9 C.1:8

3、下面的数中,能与6、9、10组成比例的是( )。

A.7 B.5.4 C.1.5

板书

表示两个比相等的式子叫做比例。

比的意义教案 篇二

教学目标

1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

教学过程

第1课时

一、创设情境,复习引入

1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

(学生举例回答,师订正。)

(根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

[设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

二、结合情境,探究新知

1.学习小数的读写。

谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

(1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

(2)全班交流订正。

(3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

下面我们先来研究一下0.25千克中的0.25表示什么意思?

2.学习两位小数的意义。

谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

(1)出示一张正方形纸片。

谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

(师板书:0.1——1/10 0.01——1/100)

(2)在正方形纸片上表示出0.25。

谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

(小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

板书:0.25 25/100

(3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

板书:0.05 5/100

0.10 10/100

(4)小组讨论:这些小数有什么共同特点?

(全班交流。教师引导学生概括出两位小数表示的意义)

3.学习三位小数的意义。

(1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

(2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

(3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

(4)引导学生概括出三位小数表示的意义

4.总结小数的意义和计数单位。

(1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

(学生寻找生活中的小数,并结合实际说出它们的意义。)

(2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

(集体交流,师引导学生总结出小数的意义。)

[设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

三、情境练习,巩固提高

1.出示自主练习第一题。

学生分别用分数和小数表示图中的阴影部分。

2.自主练习第3题。

学生独立读题,再说一说小数和分数之间的联系。

[设计意图]练习重点是小数和分数的'联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

四、课堂总结

谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

课后反思

兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

《比的意义》教学设计 篇三

教学内容:

人教版课标教材六年级上

教学目标:

1、理解比的意义,知道比是表示两个数之间的一种关系。

2、会读比、写比、知道比的各个部分名称。

3、渗透“变与不变”的函数思想。

教学重点:

理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:

沟通比与倍数、分数(百分数)、除法之间的内在联系。

教学过程:

一、初步理解比是一种关系

1、引入比。

(1)问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和红球按4比1,应该怎么放?

方案1:黄球4个,红球1个。

方案2:黄球8个,红球2个。

讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。

方案3:红球12个、白球3个;红球16个、白球4个;

讨论:为什么这些方法都是4:1?

(2)红球和黄球的比呢?

(3)小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

2、认识比的各个部分的名称。

中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。

二、进一步认识比的意义

1、出示羊毛衫图。

(1)讨论:从这个2:3中,你可以得到哪些信息?

交流:兔毛是羊毛的2/3;羊毛是兔毛的1.5倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2)如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

3、举例。

三、完善比的意义

1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

交流:飞机飞行的速度是1800÷3=600千米/小时。

1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

讨论:你看到比了吗?

交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

四、总结提升

1、 总结

(1)今天我们研究了什么?说说什么是比?

(2)比和我们以前学习的很多知识有联系,你能说说吗?

2、应用。(机动)

(1)出示:地球储水量中,淡水与海水的比是4:141。

从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

今年流行16:9的宽频数字电视。

最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

《比的意义》教案 篇四

教学目的

1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数

2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。

3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。

教学重点:

理解整数、约数和倍数的概念。

教学难点:

整数、约数和倍数的联系。

教学过程:

一、复习

1、师:谁能说说整数的含义?

出示:23÷7=3...26÷5=1.15÷3=524÷2=12

教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?

让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

教师:a的约数还可以叫做什么?

让学生用两种说法说说:15÷3=5和24÷2=12

教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

师:以上三个条件,缺一不可。

2、区别“除尽”与“整除”

师:像6÷5=1.2这样的除法,一般说6能被5除尽。

被除数和除数

整除

都是整数,除数不等于0

商是整数,而且没有余数

除尽

不一定是整数,除数不等于0

商是有限小数,没有余数

二、新课

1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)

让学生看50页关于约数和倍数。

教师:两个数在什么情况下才能说有约数和倍数关系?(整除)

能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的。”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

2、教学例1

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

教师:15能被3整除吗?

15是3的什么数?

3是15的什么数?

教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别

1、基本练习P51做一做

三、巩固练习

1、独立完成练习十一的1、2、3题。

2、第四题

教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

要判断哪些数是6的倍数,就要看哪些数能被6整除。

小学数学《比的意义》教案 篇五

教学内容:分数的意义、分子、分母、分数单位

教学要求:

1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。

2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。

教学重点:单位1和分数单位

教学准备:电脑软件、实物投影仪、正方形纸、围棋子若干

教学过程:

一、复习引进

1、出示分数,它们是什么数?

同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?

(1)把一个苹果平均分给两个同学,每人得多少?

(2)请两组同学量一量课桌的宽是多少厘米?

(3)请一位同学量一量数学书的长是多少厘米?

(得到的结果都不是整数)

在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。

什么是分数?分数的意义是什么呢?这就是我们这节课要学习的内容。

出示课题:分数的意义

二、理解概念:

1、理解单位1的概念

(1)出示一块蛋糕:它可以用1来表示。

(2)出示一个正方形:它可以用1来表示吗?为什么?

(3)出示一条线段:它可以用1表示吗?为什么?

小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。

(4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?

用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?

(5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?

(6)我们全班同学可以用1表示吗?为什么?一组同学呢?

(7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?

小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。

说说你是怎么理解单位1的?能举出例子吗?

2、理解分数意义:

(1)把这块蛋糕平均分成2份,每份是它的几分之几?

(2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?

(3)

这条线段怎么表示它的呢?这一段是几分之几?有几个这样的?

(4)把这些苹果平均分成4份,每份是几只苹果?每份是整体的几分之几?把什么看成单位1?

(5)把4个苹果看成一个整体,还可以平均分成多少份?每份是这个整体的几分之几?

(6)把6只熊猫来平均分,有几种分法?同桌讨论一下,并告诉大家,你分的每一份占整体的几分之几?每份是几只熊猫?

(7)每人拿出围棋子8颗,把它平均分,你想怎么分?

请大家观察,刚才这些分数都是怎么得到的?能自己概括出分数的意义吗?

小结:把单位1平均分成若干份,表示这样的一份或者几份的数,叫做分数。

练习:练习十八13

3、理解分子、分母的意义:

说说这个分数表示什么意义?请你回忆一下分数各部分的名称。

3分子

分数线

5分母

分母5表示什么意义?看到分母你就知道什么?分子3呢?

小结:在分数里表示把1平均分成多少份的数叫分母,表示取了多少份的数叫分子。

4、理解分数单位的意义:

自然数有单位,每个自然数都是由若干个1组成的,因此自然数的单位是几?分数也是由若干个分数单位组成的,所以分数也有分数单位,比如:是由3个组成,就是它的分数单位,的分数单位是,想一想,的分数单位是几?为什么?的分数单位呢?

你能概括一下分数单位的意义吗?

小结:在分数里,把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

练习:

读出下面的分数,并说出每个分数的分数单位。

5、学习用直线上的点表示分数:

分数可以用直线上的点来表示。

直线上相应的这一点应该用几分之几来表示?

这一点用来表示,为什么?这一点用来表示,为什么?同样都是把单位1平均分,为什么两个分数的分数单位不相同?

三、看书质疑:

今天学习的是课本p84p86的内容,请把p86的做一做练习一下,看看有什么不理解的地方,提出来,我们大家一起讨论、解决。

四、综合练习:

(一)判断:

1、把单位1分成若干份,表示这样的一份或几份的数,叫做分数。

2、把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

(二)口答:

1、把一条2米长的绳子平均分成5份,把什么看作单位1?每份占全长的几分之几?

2、把12支铅笔平均分成4份,把什么看作一个整体?3份占这个整体的几分之几?

(三)说出下面各题把什么看作1?各题中的分数各表示什么意义?

1、男生人数占全班人数的

2、一袋大米,吃了它的

3、一本书30页,小华已看了总数的

(四)填空:

5个是()是()个

是3个()()个是是()个()

(五)说出下列各分数的意义、分数单位、各有几个这样的分数单位?

(六)下图中阴影部分各占全图的几分之几?(备用)

五、作业:

《比的意义》教案 篇六

一、教学目标

1.知识与技能目标:使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2.过程与方法目标:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

3.情感态度价值观目标:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

二、教学重难点

重点:理解方程的意义。

难点:理解方程与等式的异同。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是方程的意义,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

导入:同学们,你们都喜欢玩跷跷板吗?看熊二和光头强也在玩跷跷板,我们一起来看一看,可以他们的体重悬殊太大了,光头强高高的被挂了起来。看吉吉和图图也来了。光头强和吉吉涂涂坐在一边,熊二坐在另一边,怎么样?对呀,跷跷板正好平衡了,那你们用一个算式来表示就是,对,熊二的体重等于光头强+{吉吉+图图的体重,其实在跷跷板中也蕴含着丰富的数学知识,这节课就让我们一起走进数学王国,去探究方程的意义。

【新授】

活动一:

根据翘翘板的这种现象呀,科学家就设计出了天平。看老师面前就有一个天平,天平已经是我们的老朋友了,之前我们认识克的时候就认识了她,那谁来向大家介绍一下这位老朋友呢?请你来介绍,你介绍的可真全面,请坐,天平有两个托盘,中间有一个刻度盘,天平中间有一个指针,天平左右两边物体重量相等的时候,天平就平衡,我们一般是左物右码。

那我们一起来操作一下天平,同学们仔细看,老师先将右盘上放上100克砝码,再在左盘上放上两个50克的砝码,你们发现了什么?对呀,天平平衡了。谁来用一个式子的来表示呢?请你来说,说的非常准确,请坐,50+50=100。

活动二:

那我们一起观察这个算是它有什么特点呢?请你来说目光非常敏锐等号左边和右边相等,这样的式子就是一个等式。接下来再来认真观察,老师将左边两个50克的砝码拿下来,在重新在天平的。左边放上一个杯子,你们发现了什么?对呀,天平平衡了,也就是说杯子的重量是100克,同学们是这样的吗?那老师带往杯子里倒一些水,又出现了什么情况呀?对呀,天平朝向杯子这边倾斜了,也就是说杯子的重量加水的重量大于100克。那我们再向天平右边放个100克的砝码,看一看有什么变化?天平还是朝杯子这边倾斜,那你们能用将这个过程用一个式子来表示一下嘛,请你来说。说的真不错,请坐。杯子加水的重量大于200克,谁还有更好的方法,来做的最端正的同学,请你来说你的小脑袋可真灵活,请坐。对呀,上节课我们已经学过了用字母表示数。我们可以用字母x来表示水的重量,刚刚我们已经称出了杯子的重量是100克,所以用式子来表示就是x+100大于200。同学们,你们都想到这个方法了吗?你们可真棒,那我们继续操作,我们再向右边托盘放100克的砝码,看一看有什么变化呀?来请你来说,说的非常棒,请坐。天平朝向右边托盘倾斜了。那这个过程我没有该用哪个式子来表示呢?对呀,x+100小于300,看来我们刚刚放100克的砝码放过大了,那我们再放一个小一点的试一试。

我们将这100克的砝码换成50克的砝码来试一试。同学们仔细观察,对呀,我们的天平竟然平衡了,那也就是说我没杯子加水的重量等于250克,那我们用算式来表示该如何表示呢?来躲着最端正的同学,请你来说,说的非常棒,请坐x+100=250。同学们可真是太棒了,

活动三:

通过我们的共同探索,和一起操作写出了这么多的方式,我们带来仔细观察这些算式,这些算式之间有哪些共同点和不同点呢?

先独立思考,再小组合作讨论,完成以端正的坐姿来示意老师,看哪个小组的发现又快又好开始。老师看同学们都已经坐端正了,谁来说一说你的发现,请你来说观察的非常敏锐,请坐。有的算式是等式,洋浦的是不等式,那我们再来看一看这等式的两个算式之间他们有什么不同呢?请你来说,这可真是一个了不起的发现,请坐。第二个算式有一个未知数x,而第一个没有,其实像这种含有未知数x的等式就是我们今天所学习的方程。

那是不是所有的等式都是方程呢?对呀,不是。只有含有未知数的等式才是方程,也就是说要判断一个式子是不是方程,我们需要注意哪几点呢?来请你来说,说的非常棒,我们需要有两个条件,一个是含有未知数,二是等式。

同学们,你们都是这样想的吗?那老师这样说你们看对不对?方程是等式,对这样说是正确的,那等式是方程呢?对呀,这样说不正确,因为还需要一个条件,也就是说这个等式里必须含有未知数。

观察一下黑板上这些内容,以上就是本节课所要学习的方程的意义。

【巩固练习】

那我们看一看这道题,老师买了三本练习本,一共花了2.4元,我都没本练习本价格用x来表示,那又该如何列算式?请你来说好,请多3xx等于2.4,我们上节课已经学习了,用字母表示数的时候数字与字母相乘,其中的称号我们可以省略,数字放在前面,所以是3x等于2.4。是方程吗/对呀,是我们一起来看一看符合不符合这两个条件是不是等是,对是等式,而且还有未知数。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课认识了什么是方程,什么是等式。看来啊本节课上特听讲非常认真,请坐!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去搜集一下我国古代如何解决类似的问题呢?下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

《比的意义》教案 篇七

设计说明

本节课的内容是在学生学过分数与除法的关系,分数乘、除法的意义,分数乘、除法应用题的基础上进行教学的,结合教材特点,教学按以下4个层次进行:

1.由倍数关系引出同类量的比。

结合两面长方形小旗的数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。

2.由倍数关系引出非同类量的比。

结合飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出路程与时间这两个非同类量的比。

3.概括比的意义。

以引出的几个比为例,说出比的意义,读、写法及比的各部分名称,并由计算比值的实例,引出“比值通常用分数表示”。

4.明确比与除法、分数的关系。

根据分数与除法的关系,引导学生归纳出比、除法、分数三者之间的关系。

课前准备

教师准备:PPT课件、学情检测卡

教学过程

⊙复习铺垫

1.某车间有男工5人,女工8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?

2.分数与除法有什么关系?(分数的分子相当于被除数,分母相当于除数)

设计意图:在结合生活实际复习两个同类量之间的倍数关系的基础上,进一步复习分数与除法的关系,为新知的学习做好铺垫。

⊙讲授新课

1.教学比的意义。

(1)教学同类量的比。

①用除法表示同类量之间的关系。

a.课件出示:杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。这两面旗都是长15cm,宽10cm。

b.讨论:怎样用算式表示这两面旗的长和宽的关系?(引导学生说出:可以求长是宽的几倍,或求宽是长的几分之几)

②用比表示同类量之间的关系。

a.引入比的概念:两面旗的长和宽的倍数关系还可以用“比”来表示。长÷宽=15÷10,宽÷长=10÷15,也可以说长和宽的比是15比10,宽和长的'比是10比15。

b.简介同类量的比:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,所以两面旗的长和宽的比属于同类量的比。

(2)教学非同类量的比。

①用除法表示非同类量之间的关系。

a.课件出示:“神舟”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。

b.讨论:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(42252÷90)

②用比表示非同类量之间的关系。

对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,因为这里的42252km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。

比的意义教案 篇八

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:

认识正比例关系的意义。

教学难点:

掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的。比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4.教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5.完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系-快回答§www.kuaihuida.com 吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。

《比的意义》教案 篇九

教学目标:

〈一〉知识与技能

1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值

2.在具体情境中了解概率的意义

〈二〉教学思考

让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型。初步理解频率与概率的关系。

〈三〉解决问题

在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力。锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念。

〈四〉情感态度与价值观

在合作探究学习过程中,激发学生学习的好奇心与求知欲。体验数学的价值与学习的。乐趣。通过概率意义教学,渗透辩证思想教育。

【教学重点】在具体情境中了解概率意义。

【教学难点】对频率与概率关系的初步理解

【教具准备】壹元硬币数枚、图钉数枚、多媒体课件

【教学过程】

一、创设情境,引出问题

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去。我很为难,真不知该把球给谁。请大家帮我想个办法来决定把球票给谁。

学生:抓阄、抽签、猜拳、投硬币,

教师对同学的较好想法予以肯定。(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法。如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平。能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳。

聪明在于勤奋,天才在于积累。上面的9篇比的意义教案是由快回答精心整理的比的意义教案范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。