作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?以下是快回答给大家分享的14篇分数除法教案,希望能够让您对于分数除法的写作有一定的思路。
分数除法 篇一
教学目标:
1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型
2、在解方程中,巩固分数除法的计算方法。
重难点:
1、能自觉用解方程解决简单的有关分数的实际问题。
2、正确进行分数除法计算。
学情分析:
分数除法运用问题历来是教学中的难点,尤其是在解决分数乘除法混合问题时,学生难以判断是用乘法还是用除法解答。为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题。因此教学时,我让已经养成预习习惯和预习方法的学生利用这幅主题图做充分预习,然后把所有信息设计成开放式,让学生根据信息大胆找到关系,提出问题,并出示“探究指导”鼓励学生独立解决问题,这样让学生思之有法,学之有据,并能养成良好的学习习惯,反馈时,学生会出现多种解决问题的策略,要适时引导,鼓励学生用方程解决此类问题。如果有学生选择用除法计算,要引领学生做好分析,可借助线段图的功能沥青思路。
课前预习作业:
1、 读一读、想一想:p29
2、 写一写、填一填:
操场上有( )人参加活动; 跳绳的有( )人;
踢毽子的有人;打篮球的有人;跑步的有( )人;
踢足球的有( )人。
3、 说一说、做一做:
感到认识模糊的与父母和同学说一说,试做名校。
4、 质疑:
教学流程:
一、创景激情:
同学们,你们喜欢课外活动么?你们都喜欢什么样的课外活动?你们的课外活动真是丰富多彩,在课外活动中也能发生数学故事那,今天就让我们这节课进行一次快乐的数学活动好么?(1分钟)
预习检测:5分钟
1、 判断谁是整体“1”,说出个数量关系。
(1)书的价钱是钢笔价钱的2/5。
(2)一种书包打九折出售。
(3)参加跳绳的是操场上参加活动总人数的2/9。
2、解方程:
8x=4/75/8x=1/4
3、前面的填一填。
二、自主探究:
l 1、同学们观察很仔细,预习很认真,这些数量之间有什么关系么?
可能会出现:“打篮球的人数是踢足球的4/9”等等 (随即板书)
l 2、根据这些数学信息,你还能提出哪些数学问题?
可能会出现:“踢足球的有多少人?”等等。( 随即板书)
l 3、同学们你们想解决哪个问题?
选定探究问题,出示探究指导:
独立思考我能行:(3分钟)
l 要解决这个问题,要用到我们提供的哪些条件?
l 找到整体“1”,等量关系是什么?
l 自己尝试解决问题。
合作交流我最棒:
l 做完后与同座交流列式的根据是什么?(2分钟)
l 4、汇报交流
l 方程:求一个数的几分之几是多少用乘法。(提倡)
l 除法:可借助线段图理解。
5、探究其余问题。
6、总结方法:
分数应用不算难,
掌握方法是关键;
“是、占、比、与、相当于”,
后面数量看作“1”;
知一求几用乘法,
知几求一用方程。
三、运用提高:
生活处处用分数:1、某月双休日共有9天,是这个月总天数的3/10,这个月有多少天?
2、“丑小鸭”超市让利大酬宾,商品一律八折,一件衬衣现价40元,这件衬衣原价多少元?
四、小结升华:
通过这节课的活动,你有哪些收获?还有什么问题?
五、课尾小测。(10分钟)略
分数除法 篇二
教学内容:
教科书第63页例6及“试一试”“练一练”,练习十二第9~12题。
教学目标:
1、使学生能灵活的计算分数连除和分数乘除的混合运算。
2、帮助学生进行分析两步计算的应用题的解题的分析时的思路
重点:使学生能灵活的计算分数连除和分数乘除的混合运算。
难点:在做混合运算时候的统一的转换的问题。强调如果遇到除法的时候该怎么办?
对策:让学生在练习中,出现错误并进行分析,从而进行解答。
教学过程:
一、复习
分数乘、除法我们是如何计算的?
分数除法的计算法则是:甲数除以乙数等于甲数乘以乙数的倒数。
二、新课
1、出示例题6
每盒果汁4/5升,每杯可装3/10升。3盒果汁可以倒满几杯?
2、请学生读题
请学生先说说你是怎么想的?
解法1:我们可以先算出3盒果汁一共有多少升?
4/5×3=12/5(升)
再计算一共可以倒多少杯?
12/5÷3/10=8杯
提问:有没有其他的方法吗?
请学生进行思考
可以先算出1盒果汁可以倒几杯
4/5÷3/10=8/3(杯)
8/3×3=8(杯)
可以让学生说说能不能用综合算式来进行计算
4/5×3÷3/10
=4/5×3×10/3
=8(杯)
总结:在乘除混合运算的时候,如果遇到除法的时候,我们就把他转化为乘法。
3、让学生尝试做试一试
5/8÷3/4÷5/7
让学生独立的做,做的时候要注意只要遇到除法就要转化为乘法。
让学生独立的做,做好以后再请人扮演。
提问:分数连除或分数乘除混合运算可以怎么样计算?请学生在小组里交流
三、巩固练习
1、做练一练的题
请学生独立的做,做好以后再请人板演
提问:在做的时候我们要注意什么?
2、请学生做练习十二的第9题目
请学生独立的做,做好以后再请人板演。
四、小结
今天这节课你学到了什么内容?
课前思考:
例6是乘除两步计算的实际问题,教学分数乘除混合或连除计算。例题可以列出不同的算式解答,所以在教学时如何让学生理解题中的数量关系,寻找出两种不同的解题思路是一个难点,另一个难点则是如何正确计算分数乘、除法的混合运算。
列出的两道综合算式,教材已经计算了一道。示范了计算分数乘除混合式题,一般先转化成分数连乘,再约分、相乘。突出了只能把算式里的除法变成“乘除数的倒数”。教材把另一道综合算式留给学生计算。实际教学中先让学生在书上独立计算,然后教师选择错误较为典型的计算要进行重点讲评,帮助学生分析计算中存在的错误。这一环节可能需要多花些时间。计算后还应该比一比,两道综合算式在计算时有什么相同点,进一步突出计算的策略和转化的方法。
在计算乘除混合式题时得到的体验会迁移到分数连除里去。教材在“试一试”之后让学生说说,分数连除或分数乘除混合运算可以怎样计算,促进迁移,发展认知结构,并在“练一练”中得到巩固。“练一练”的两道题分别是乘除混合和分数连除计算,在计算之后可以组织学生辨辨左题里的除数与乘数,比比右题里的整数与分数,说说计算的体会,使计算的思路更清楚、牢固,计算的技能更扎实、灵活。
课前思考:
例题6是通过实际生活问题的解决理解分数连除或乘除混合运算的计算方法,例题6的数量关系是以前学过的类型,但由于其中的数据由整数改为了分数,学生对分数的数感没有整数清晰,并且受前面分数乘除法应用题的干扰,可能会与分数乘除法应用题混淆。
教参上建议画简易实物图的方法帮助学生理解题意,我觉得这个办法可试一试,让学生读题后独立思考,列式解答。然后建议学生用画图的方法将自己的解答方法给大家作说明,看看谁能借助画的图说得很清晰?从而帮助学生理解数量关系,正确解答。
课后反思:
通过教学,学生都能明确计算分数乘除混合运算时,先把其中的除法转化为乘法,再按连乘的方法计算。但在实际计算时,会出现种种错误,如4/7÷1/5×7=4/7×5×1/7、5/8÷7/12÷10/7=8/5÷12/7×7/10,导致计算正确率不是很高。
在做练习十二的12题时,有少数学生不能有条理的按序分析解答,数量关系没弄清,所以在这题的讲解上花时很多。
课后反思:
与潘老师有同感,课堂上学生对例题6的理解与分数乘除混合与分数连除的计算方法掌握还可以,比我想象中的好。学生对两种解答方法的分析比较到位。能结合例题和巩固练习很好地总结计算方法。但在作业中,学生也出现了上面的计算问题,稍一提醒,学生马上心领意会。
第11题,也有部分学生分析理解错误,现在的教材缺少了基本数量关系的分析,类似于这题,原来教材上是有“工作效率×工作时间=工作总量”这样的训练的,现在教材上这样的训练没有了,都是结合具体题目来具体分析,在整数情况下,学生还是比较好理解,但现在的数据是分数,学生对分数的数感没有整数好,所以会出现颠倒的情况。
第12题我觉得这是训练学生灵活掌握分数乘除法应用题的很好材料,同时也是训练学生有序思考的很好材料。
课后反思:
和两位老师有同感,学生们对于例题6这样的实际问题的数量关系很清晰,能用两种不同的解题思路来分析,并能正确列出综合算式计算。在随后的计算过程中,我也发现学生们几乎不存在困难,只有个别学生在计算乘法时把乘数也变为倒数来计算。所以学生们已经会的,我们教师就不要再花时间去罗嗦了,可以将时间留给学生再完成一些练习,如练习十二的第12题,由于信息较多,要求的问题也多,并且分数乘法和分数除法混在一起,给部分学生分析数量关系造成了困扰。虽然,在课堂上我先指导了一下,教学生如何根据题中的信息,先求出什么再求什么,但由于少数学生分析数量关系存在困难,所以解决这一题问题较大。我想在明天和后天的单元练习中增加类似的题目,让学生再次练习。
分数除法教案 篇三
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的'条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
分数除法教案 篇四
教学目标:
能力目标:
培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:
提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:解决实际问题。
教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的'。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
分数除法教案 篇五
教学目标
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点
整数除以分数的。计算法则推导过程。
【教学难点】
理解一个数除以分数的计算法则的推导过程
教学过程
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)
五、板书设计
整数除以分数
除以真分数商大于整数
整数除以分数
除以假分数商小于整数
除以1商等于整数
六、教学反思
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛
分数除法教案 篇六
教学目标
1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。
2.运用所学的分数除法的知识,解决相应的`实际问题。
教学重难点
教学重点:正确熟练地进行分数除法的计算。
教学难点:解决相应的实际问题。。
教具准备课件
设计意图教学过程特色设计
正确熟练地进行分数除法的计算。
教学过程
一、基础知识练习:
(一)计算:
2/13÷28/9÷43/10÷35/11÷522/23÷2
3/10÷223/24÷2617/21÷518/9÷713/15÷4
学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的
(二)教材P36第13题,学生独立计算。
二、深入练习
教材P36第14题,学生板演,集体订正。
三、解决问题
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
教材P36第12,15,16题。
学生先读题,说一说解题思路,然后学生列式计算。
分数除法 篇七
教学内容:
教科书第58页例4及
“练一练”,练习十一第9~14题。
教学目标:
1、通过本课的学习使学生学会计算分数除以分数的计算的方法。
2、通过学习使学习总结出分数除法的基本的计算的方法。
重点:通过本课的学习学会分数除法的计算的法则。
难点:能通过这几天的学习,总结出分数除法统一的计算的法则。
对策:方法的总结,请学生在自己的学习的基础上得出。
教学过程:
一、复习
1、提问:昨天我们学习了什么内容?
2、练习:课本57页的2
请学生独立的做,做好以后请人说说你是如何计算的?
二、新课
1、出示例题4
2、请学生读题:读好题目以后让学生说说你是怎么列式子的?
3、让学生先尝试着计算,计算的时候要让学生联系课本上的图进行。
4、学生做好以后,进行讨论:
联系分数除以整数和整数除以分数的计算的方法,看看此题能不能用被除数乘除数的倒数来进行计算?
5、学生讨论好了以后再进行交流
6、讨论:
我们原来学习分数乘法的时候,总结出了统一的计算的法则,通过这几天的学习你能不能总结出分数除法的统一的计算的法则?
7、学生讨论好以后进行交流最终总结出:甲数除以乙数等于甲数乘以乙数的倒数。乙数不为0
8、让学生在进行复述
三、巩固练习
1、练一练的第1题
先让学生独立的做,做的时候要先让学生涂色,并思考,从而进一步体会分数除分数转化为分数乘分数方法的合理性。
2、练一练的第2题
通过本课的学习让学生加深理解转化的思想
强调:被除数不变,除号变乘号,除数变倒数。
3、练一练的第3题
让学生独立的做,做好以后请学生联系题目说说解答的方法。
4、练习十一的第9题
让学生完成上面的一排
做好以后让学生进行板演和集体订正。
5、让学生尝试做练习十一的第10题
做此题时关键要让学生理解,哪个数除以哪个数并且做的时候不要快,要求每一步写具体。
6、练习十一的第11、12题
这两题可以综合的起来讲,在学生练习的基础上进行小结:
在除法中,如果除数小于1,商大于被除数
如果除数等于1,商等于被除数
如果除数大于1,商小于被除数
四、小结:通过本课的学习你有什么收获?
五、作业
课前思考:
例4和例3一样都要验证分数除法可以转化成分数乘法。例1计算分数除以整数,例2计算整数除以几分之一的分数,初步知道分数除法可以变成乘法来计算。例3加强对这种转化的体验,要求学生想一想等式4÷2/3=4×3/2成立吗?这个等式的出现,源自例1、例2的计算体验,是一个猜想。它是否成立?需要验证。教学例4的时候,学生对分数除法转化成分数乘法的心向比较明显和强烈了,教材让他们按这样的思路试着算一算,得到与示意图相同的得数,从而确认猜想成立。
通过例4的学习,要总结整数除以分数的计算方法,体会分数除法变成乘法,应该用被除数乘除数的倒数。例4总结算法的视野比较开阔,要得出分数除法的计算法则。因此这里可以先小结分数除以分数的算法,再联系分数除以整数和整数除以分数的计算,找出这些分数除法在计算时有相同的策略与转化方法。然后用甲数和乙数分别表示被除数和除数,准确而简明地表达分数除法的计算法则。
巩固练习部分的第11题是通过学生计算要思考:什么情况下,除得的商会比被除数小,什么情况下,除得的商比被除数大?什么情况下,除得的商等于被除数?我想有以前学习小数除法和整数除法的基础以及本题的计算,大部分学生一定能感悟出其中隐藏的规律,课堂上要多给学生交流表达的机会,让他们用自己的语言来总结自己所发现的规律。
课前思考:
孙老师对4个例题的编排意图认识深刻到位。有同感,特别是计算方法的总结。所以本节课的前面复习与新授部分我想修改如下:
一、复习
1、我们已经学习了分数除法中哪两类计算?你能分别举例,并说说各自的计算方法吗?让学生举算式,计算,说计算方法。
2、说说两者在计算方法上有何相同点?
二、新授
1、出示例题,指名读题。
2、说说题中9/10升和3/10升的意义。
3、怎样列式?学生口头列式。
4、猜一猜,分数除以分数怎样计算?
5、请你用画图的方法证明你的猜想。
6、学生画图分析。
7、指名上台分析解释。
三、巩固练习(一)
1、书上第58页练一练第1题:按要求操作,说明。
2、书上第58页练一练第2题:集体练习,指名板演,交流评析。
四、对比总结
1、今天学习的分数除法与前两天学习的分数除法有何相同点?
2、观察板书:
分数÷整数=分数×整数的倒数
分数除法 整数÷分数=整数×分数的倒数
分数÷分数=分数×分数的倒数
你发现三者有什么共同点?
从而引导学生得出: 甲数÷乙数=甲数×乙数的倒数
其中甲数可以是指任何一个数,但乙数必须要是0以外的数。
五、巩固练习(二)
(同潘老师设计)
课后反思:
今天课堂上学生对分数除法的计算方法理解掌握比较到位,但对甲数与乙数的数值范围展开了激烈的争论,有学生提出甲数也要0除外,这是我没有想到的。于是引导学生进行辨析,并补充了加、减、乘、除中特殊数(0和1)的有关计算。
书上第60页上的第11题,由于自己课前对教参钻研不到位,今天课堂教学时拔高了要求,使观察的难度提高了许多,导致学生之间的差异比较大。部分学有困难的学生可能根本没有理解第11题中所渗透的数学知识。看来,对教材的钻研不能凭自己的老经验,必须认真仔细地阅读教材与教参,这样每一题的教学目标的设定才能恰如其分。
第三,从学生的作业反应来看,类似于书上第14题的练习,学生出现的问题就是将两者弄颠倒,小数学习时是这种情况,现在分数学习时还是这种情况。如何帮助学生区分这两题?我有些困惑?得与同年级组老师再商量商量了!
课后反思:
关于分数的问题,无论是计算还是应用题,学生普遍感到是困难的。原因之一是教师没有向学生提供足够的模拟经验,因此,要求学生用符号或结论来表征数学就显得困难重重了。唯一的做法就是,将学习任务置于有意义的环境中,引导学生合作解决问题。上述教学中,如果没有教师创设的探究氛围,很多学生是不能理解“一个数除以分数”的计算法则的。同样,如果缺乏交流,学生就不能使用多种方式表征数学,从而达到对知识的深层理解。
学生学习了一个数除以分数的方法后,大部分掌握了计算方法,但有个别学生在计算时虽然把除数颠倒过来,但除号没有变。在解方程时方法基本掌握,但还是存在上述不变号的现象,所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。
课后反思:
因为有了前两课时——分数除以整数和整数除以分数的学习,所以当本课的例题出示后,学生马上想到可以用被除数乘除数的倒数来计算。课堂上,我赶紧追问学生:你有什么好办法来验证自己的计算是正确的?出乎我的意料,有几位学生想到了根据除法中各部分数之间的关系来进行验证,即用除得的商乘除数,看结果是否等于被除数。多精彩!看来学生学会用知识的融会贯通,能活学活用了。
从学生练习情况看,当计算练习中有乘法又有除法时,学生在计算时很容易将两种计算都归为用一个数乘另一个数的倒数。看来在国庆长假后的第一天要补上一节计算课,将分数乘法和分数除法的计算再次巩固一下,为后面的学习打好基础。
分数除法教案 篇八
教学目标:
1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。
2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。
3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。
教学重、难点:
掌握运用分数乘法解决简单实际问题的基本思路与方法。
教学对策:
设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。
教学准备:
自制投影片或小黑板
教学过程:
一、揭示课题
谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)
二、基本练习
1、计算练习。
5/129/10 3410/51 22/3926/11
10/2112/257/8 3/20145/7
8/15 6 11/622 2515/16 812/13
11/1222/9 15/165/12 5/1410/21
学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。
组织学生小结分数乘法和分数除法的计算方法。
2、解方程。
12x=9/11 3/8x=9/10 6/5x=15
学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。
3、在○里填上、或=。
5/711/13○5/7 7/916○7/91/16
5/71○5/7 5/77/5○5/7
6/73/5○6/7 3/84/ 3○3/8
110/9○1 8/111○8/1
学生不计算,通过已学知识进行判断,然后交流判断理由。
教师及时组织学生小结:
一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。
一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假 www.1mi.net 分数,结果小于这个数。
4、根据已知条件找准单位1的量并说说数量关系式。
(1)白兔只数的5/12是黑兔的只数。
(2)已经修了公路全长的3/4。
(3)今年棉花产量比去年增加1/8。
(4)第三季度冰箱价格比第二季度便宜1/10。
(5)二班植树棵数相当于一班的9/8。
(6)还剩这堆煤的3/8。
学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。
5、解决实际问题。
(1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?
(2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?
(3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?
(4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?
(5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?
(6)一盒鲜牛奶的`净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?
(7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?
学生独立完成后进行交流,主要交流思考过程。
三、全课总结
评价一下自己的练习情况,分析一下还存在什么问题。
课后反思:
按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。
但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。
分数除法教案 篇九
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的`意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
分数除法 篇十
课题一:复习概念和计算
教学内容
教科书第56页的第1~3题,练习十四的第1~4题。
教学目的
使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。
教学过程
一、复习分数除法的意义和计算法则
1.引入。
教师:这一章我们学习了分数除法的有关知识。其中包括:
(1)分数除以整数,例如÷5;
(2)一个数除以分数,它又包括整数除以分数,例如20÷;和分数除以分数,例如÷.
教师在叙述的同时,将复习的内容列成下表。
内 容
举 例
分数除以整数
一个数除以分数
整数除以分数
分数除以分数
÷5
20÷
÷
2.分数除法的意义。
让学生做第71页“整理和复习”的第1题。
提问:要把这道乘法算式改写成两道除法算式,应该怎么办呢?
引导学生根据乘、除法的关系进行改写。然后让学生将改写的算式填写在书上。
完成后,提问:大家改写成的两道题是分数除法算式。那么,分数除法的意义是什么呢?
使学生明确,分数除法的意义是:已知两个因数的积与其中一个因数,求另一个因数的运算。然后将其列在表中。
内 容
举 例
意 义
分数除以整数
一个数除以分数
整数除以分数
分数除以分数
÷5
20÷
÷
已知两个因数的积与其中一个因数,求另一个因数的运算
教师:分数除法的意义与整数除法的意义相同吗?
学生:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
3.分数除法的计算法则。
教师分别提问:分数除以整数应该怎样计算?一个数除以分数应该怎样计算?
学生分别回答后,再指名学生将其概括为一个统一的计算法则,并将其板书在黑板上的表格内。(如下表。)
内 容
举 例
意 义
计算方法
分数除以整数
一个数除以分数
整数除以分数
分数除以分数
÷5
20÷
÷
已知两个因数的积与其中一个因数,求另一个因数的运算
甲数除以乙数(0除外),等于甲数乘乙数的倒数
4.做第71页“整理和复习”的第2题。
让学生独立完成,教师注意巡视。完成后集体订正。
二、复习比的意义和基本性质
1.比的意义。
提问:什么叫做比?(两个数相除又叫做两个数的比。)
再问:什么叫做比值?(比的前项除以后项所得的商。)
又问:大家请看“3∶2”,这里什么是比的前项,什么是比的后项,什么是比号?
让学生回答后将其板书成如下形式:(为制成表格做准备。)
3∶2=1.5
┇ ┇ ┇ ┇
前 比 后 比
项 号 项值
教师:比和比值有什么区别和联系呢?
通过学生回答,使他们弄清楚比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式32,但仍读作3比2.这里还要特别强调比的后项不能为0.
教师:那么,比和除法、分数有什么联系和区别呢?
师生共同整理列成下表。
联 系
区别
比
3∶2=1.5
┇ ┇ ┇ ┇
前 比 后 比
项 号 项值
比值表示两个数的关系
除法
3÷2=1.5
┇ ┇ ┇ ┇
被 除 除 商
除 号 数
数
是一种运算
分数
分子 … 3
分数线 … —=1.5
分母 … 2 分
数
值
是一种数
2.比的基本性质。
教师可以根据学生情况提出下面问题:
①比的基本性质是什么?
②应用比的基本性质,怎样对整数比进行化简?
③不是整数的比应该怎样化简?
然后让学生做第71页“整理和复习”的第3题。教师注意巡视,察看学生化简比时所采用的方法。
做完后,可以指名学生说说自己是怎样想的。
三、课堂练习
1.做练习十四的第1题。
先让学生独立完成。订正时,要让学生说出判断正误的理由。
2.做练习十四的第2题。
要求学生做题时,不能只写答案,要写出一定的步骤。然后让学生独立完成。做完后举手示意。教师行间巡视,注意掌握一半学生完成时和三分之二的学生完成时所用的时间。
3.做练习十四的第3题。
让学生独立完成。教师注意巡视,察看学生所用算法是否简便。
集体订正时,让学生说说自己是怎样想的。
4.做练习十四的第4题。
让学生独立完成,教师行间巡视,最后集体订正。
分数除法 第十一篇
教学内容:
教科书第62页例5及“试一试”“练一练”,练习十二第1~3题。
教学目标:
1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。
2、使学生在探索解决问题方法的过程中,进一步培养学生独立思考等能力。
重难点:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。
教学过程:
一、导入
出示例题5的图,小瓶标注600ml,大瓶标注?ml
启发:这两瓶果汁,从图中你知道了什么?
学生口答后,追问:根据图中的已知条件,你能求出一大瓶果汁有多少毫升吗?为什么?
提出要求:如果让你补充一个条件表示这两瓶果汁数量关系,你打算怎么样补充条件?
学生可能补充:大瓶的果汁比小瓶多300毫升,大瓶是小瓶的3/2等等,教师参与学生的交流并出示:小瓶里果汁是大瓶的2/3
引导:根据老师补充的这个条件,你能求“一大瓶果汁有多少ml吗?
二、探究
1、教学例题5
提问:小瓶里的果汁是大瓶的2/3,这个条件中的2/3是哪两个数量比较的结果?
提问:把哪个数量看做单位1,单位1的2/3是哪个数量?
提出要求:你能根据上面的讨论,找出题目中的数量之间的相等的关系吗?
先请学生互相说,再请全班说。
板书:大瓶果汁量×2/3=小瓶果汁的量
启发:现在你准备如何来进行解决?
在学生回答:可以列方程后,追问:可以怎么样列方程?
根据学生的回答,板书:
解:设:一大瓶果汁有x毫升。
x×2/3=600
学生完成课本上的解方程,并指名板演
启发:x=900是不是正确的解呢?你会进行检验吗?
让学生进行检验,并交流检验的方法
2、教学试一试
学生读题后,提问:你能根据题目意思说出两个分数之间的含意吗?在讨论中明确:1/2表示已经喝的是一盒的1/2;而2/5l表示已喝的牛奶升数。
启发:根据对题意的理解,你能先把数量关系补充完整吗,再解答吗?
学生解答以后,再让学生说说怎么想的?
三、练习
1、做练一练
要求学生独立的做,提问:你是怎么样想的?
2、作练习十二的第1题
先让学生把数量关系补充完成,再解答。学生完成以后,指名说说思考的过程。
3、做练习十二的2、3题
先让学生独立的解答,再根据完成情况进行点评。
四、小结
今天这节课,你学到了什么内容?
课前思考:
例题5是已知一个量的几分之几是多少,求这个量。这类实际问题的顺向思维是根据关键句写出数量关系式,再列方程解决。但由于用方程解答需要写出“解设------为x”,解方程的过程也比较麻烦,所以如果让学生自由选择的话,估计很多学生会选择用算术方法解答。如何让学生从一开始就体会到用算术解的优越性?我想对本课的教学做如下调整:
一、找找“1”的量是什么?再将数量关系式补充完整。
1、男生的人数是女生的4/5
( )的人数×4/5=( )的人数
2、一条路,已经修好了1/5。
( )的长度×1/5=( )的长度
3、9月份实际用电量比8月份少1/4
( )用电量×1/4=( )用电量
4、小瓶里的果汁是大瓶的2/3
( )的果汁量×2/3=( )的果汁量
二、新授
1、接着复习题,如果小瓶里的果汁有600毫升,那么大瓶里的果汁有多少毫升?你准备怎样解答?你是怎样想的?引导学生发现此时根据数量关系的分析,应该采用方程解很好理解。
2、让学生独立解答,指名板演。
3、评价板演题,分析情况。
4、再出示:如果知道大瓶里的果汁是900毫升,怎样求小瓶里有多少毫升?你是怎样想的?为什么现在直接用算术方法解答。
5、总结解决分数实际问题的思考过程:
(1)找关键句,分析单位“1”的量,找到数量关系式。
(2)根据数量关系分析,确定解答方法。(方程解还是算术方法解)
(3)列式解答。
(4)检验。
三、巩固练习
(同潘老师设计)
课前思考:
找数量关系式——列方程解题的关键
本课时教学的这道例题的教学重点是为什么用方程解答,以及怎样列出方程。分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。学生读题后要思考 “大瓶和小瓶的果汁量有什么关系”,要仔细领会“小瓶的果汁量是大瓶的2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”这一数量关系式中,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。但实际教学中如果有学生想到用除法计算也要加以肯定。因为相对于学习困难生来讲,用列方程的方法便于思考和理解。所以不能把这类题规定学生一定要用方程解,这违背了编者的意图。
“试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,有些学生如果感悟到求单位“1”的量应用除法计算也未尝不可。
课后反思
这节课学习的分数除法应用题是在学生掌握了分数乘法应用题以及分数除法的意义和计算法则之后进行教学的,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系(这是本节课的重点也是难点),根据数量关系列出方程。
在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,增加了对同一个问题根据算式补充条件的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。
课后反思:
例题5是典型的分数除法应用题,但现在的新教材屏弃了原老教材对单位“1”已知还是未知的判断,从而确定解答方法是乘法还是除法的思考方法。引导学生对关键句分析,找“单位1”的量,分析数量关系,这样将分数乘除法应用题统一为一种思考方法,学生的思维难度降低了。
从今天课堂表现看,思考解答方法学生能掌握了,但从对关键句的分析中,发现部分学生根据关键句找数量关系有一些困难,直接导致解答方法不正确。
课后反思:
因为昨天的数学课上,我安排了分析数量关系式的练习,为学习今天的内容做了一些准备,所以今天的数学课上,一开始,我就将例题5改编为“大瓶里有果汁900毫升,小瓶里的果汁是大瓶的2/3,小瓶里有果汁多少毫升?”,然后让学生写出数量关系式并列式解答。接着,我再将这一题改为例题5,并组织学生再次分析数量关系式,学生们发现和刚才一题的数量关系式相同,但是这一题中已知小瓶果汁量,要求大瓶果汁量,我问学生“你会解决这个问题吗?”学生独立尝试解答这一题,在交流时大部分学生根据刚才分析的数量关系式列出了方程。在随后的练习中,我再次要求学生先根据题中的关键句分析数量关系式再解答,巡视学生练习情况时也特别关注学生分析数量关系式的正确率。
课堂作业中,学生们完成得不错,都能先写出数量关系式再列方程解答。看来,明天的课上可以让他们学习用除法直接解决这类数学问题。
分数除法 第十二篇
我们知道,分数除法的意义作为分数除法这个单元的起始内容,学生理解了分数除法的意义对于后面用分数除法解决实际问题有着重要的作用。最近在网络教研活动中,老师们针对“分数除法的意义是否可以探究”展开了热烈的讨论。一种观点认为,分数除法的意义不值得探究,直接告诉学生就行;还有一种观点认为,可以探究,但探究的价值不大,所以还是不探究的好。我认为,分数除法的意义是可以探究的,并且具有探究的价值。问题的关键在于怎样组织好这个探究活动。
我们不妨先看两个不同的教学片断:
片断一:湖北省武昌水果湖二小 易玲老师执教
……
师:我还知道秭归有个美誉,它被称为中国脐橙之乡,秭归的脐橙个个果大味甜,每个脐橙的重量可达200g左右。老师想问问大家了,每个脐橙约重200g,3个有多重?
生:200×3=600(g)
师:每个脐橙约重200g,3个约重600g。小精灵也想问问大家了,根据这个问题的数量关系,怎样将它改编成用除法计算的问题呢?
生:3个脐橙有600g,每个约重200g,请问一个有多重?
师:(板书问题)怎样解决这个问题呢?
生:用总重量600g除以脐橙的总数3个,等于200g。
师:你直接说算式可以吗?
生:600÷3=200(g)
师:还可以怎样改编用除法计算的问题呢?
生:有一些脐橙,它的总重量有600g,知道每个脐橙约200g,问有多少个脐橙?
师:老师把她的问题稍稍提炼了一下,每个脐橙约200g,几个约重600g?(板书问题)怎样算呢?
生:600÷200=3(个)
师:非常好!在咱们刚才的这几个问题里,脐橙的重量我们用克来作单位,如果用千克来作单位,200g又可以看作是多少呢?请你说!
生:200g等于0.2kg。
师:用分数表示又是多少呢?
生:0.2千克等于1/5 kg。
师:好的,那每个脐橙的重量约是1/5 kg(板书),那刚才的乘法算式又可以怎样写呢?
生:1/5 ×3=3/5 (kg)
师:那下面两个除法算式又可以怎样改写呢?
生:3/5 ÷3=1/5 (kg) 3/5 ÷1/5 =3(个)
师:看一看咱们改写的这三个算式,上面一个是我们已经学过的分数乘法算式,下面两个是……
生:(齐)分数除法。
师:那今天这节课我们就一起来研究分数除法问题。(板书课题)
师:仔细观察黑板上的这两组算式,你发现了什么?
生:已知3个脐橙的总重量和其中一个因数,求另一个因数的运算。
生:下面除法算式的600g是上面乘法算式的积,3和200是上面的两个因数,已知两个因数的积和其中一个因数,求另一个因数用除法计算。
师:她说到了咱们学过的整数除法的意义,那整数除法是这样的,分数除法又是怎样的呢?生:整数除法的意义同分数除法意义相同。
师:是这样的吗?还有谁想说说?
生:整数除法的意义同分数除法意义相同。
师:非常好,同学们观察得非常仔细,也很会动脑筋,其实分数除法的意义同整数除法意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算。
(分析:在这段分数除法的教学中,教师通过整数乘除法问题转化为分数乘除法问题,引导学生发现分数除法的意义与整数除法的意义相同,这个观察、比较、推理的过程就是探究。其价值在于不仅探究出分数除法的意义,而且让学生明确了分数、小数、整数除法之间的内在联系,学生认知领域得以拓展,认知结构得以完善,这比分数除法意义本身价值更大。)
片断二:黄冈市实验小学 余振兴老师执教
师:中秋节刚过,你们吃月饼了吗?(吃过)中秋那天老师也买回了一些月饼,如果每人吃半块月饼,刚好可分给4个人吃。老师买了多少块月饼?
生: ×4=2(块)
师:把这两块月饼,平均分给4个人,每人分得多少月饼?
生:2÷4= (块)
师:把这两块月饼,分给每人半块,可分给几个人?
生:2÷ =4(个)
师:下面来研究一下这三道算式,第一道中的“1/2”、“4”和“2”分别叫什么名称?请再观察后两道算式,结合第一道算式,你能说一说它们都是已知什么和什么,求什么的运算吗?
生1:已知两个因数的积和其中一个因数求另一个因数的运算。
师:很好!那你们能说说分数除法的意义是怎样的吗?
生2:分数除法的意义就是已知两个因数的积和其中一个因数,求另一个因数的运算。
(课件出示):已知两个因数的积和其中一个因数,求另一个因数的运算。
师:这就是分数除法的意义。你们想的是这样的吗?它和整数除法的意义一样吗?(一样)
(分析:这个教学片断比片断一要简练一些,教师采用的策略是让学生从实际情境中列出分数乘除法算式,并观察得出结果;接着引导学生观察三道算式的各个部分,并发现他们之间的联系,借助整数除法的意义,推理得出分数除法的意义,这个过程也是探究。其价值在于把新的问题纳入到已有的认知结构之中,建立牢固的知识链,便于学生透彻理解分数除法的意义。)
从以上描述和分析,我们不难看出,对于某一个事件(知识)采用什么学习方式,关键在于能否取得更好的学习效果,教学不仅关注知识的本身,还应当关注学习方法、解决问题的策略。
从小学生的年龄特点看,探究学习不是纯粹的课题研究,它应当是在一定的学习情境中独立的思考,自主地发现问题,通过实验、操作,调查、分析、推理,交流与表达等探索活动。国外有学者提出探究学习有实验性探究、逻辑推理任务、基于测量的研究、工程性设计、技术性设计和开放性研究等基本类型。按照这种分类,分数除法意义的探究就是逻辑推理任务型的探究。之所以说分数除法有必要组织学生探究,其教育价值在于让学生经历探索过程以获得理智和情感体验,掌握解决问题的方法。当然,并不是所有的教学内容都要组织探究的,对于一些概念性的定义,用接受式学习也能取得好的教学效果。
以上所述,请大家指正。
分数除法 第十三篇
教学内容:
教科书第55~56页例1及“试一试”“练一练”,练习十一第1~4题。
教学目标:
1、通过本课的学习使学生理解分数除以整数的计算的方法。
2、用两种不同的方法来理解分数除以整数的计算的思路。
3、通过观察发现并总结出分数除以整数的计算的方法。
教学重点:分数除以整数的计算的方法
教学难点:分数除以整数的计算方法的总结。
教学对策:让学生在观察,然后用自己的语言来总结出分数除以整数的计算的方法。
教学过程:
一、引入
1、通过上一单元的学习我们已经学会了如何来计算分数乘法,从今天这节课开始我们将开始学习新的内容。
2、说出下面数的倒数是多少?
3 5 9
二、新课
出示挂图让学生进行观察
例题1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
2、请学生先在左边的图中分一分再列出算式
分析:学生可能会出现以下的两种情况
情况1:把4/5平均分成2份,就是把4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。
情况2:把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。
3、并请学生把这两种不同的思路进行按照思路进行计算。这里要注意学生所想的要和他的思路所对应。
4、两种方法让学生进行充分的讨论。
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数等于分数乘以这个整数的倒数的思路。
5、让学生做试一试的题
通过本题的计算使学生先用刚才的方法来计算。
分析:用刚才的方法来进行计算肯定会发现问题。因为在这的分子4不能被3进行整除,所以迫使学生使用刚才所讨论的第2个方法来进行计算。
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
6、再请学生进行交流
我们该如何计算分数除以整数?
交流好以后请学生进行回答。
小结:通过刚才我们的学习我们知道分数除以整数的计算的方法是多样的,但用分子平均分成几份的这种方法有局限性,我们一般选择的方法是除以一个数等于乘以这个数的倒数。
三、课本56页的练一练
1、第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
2、第2题
注重样让学生用乘法来计算
做好以后进行集体讲解和订正。
3、第3题
学生独立做,能根据题目灵活选择计算方法。
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
四、小结
今天学习了什么内容?我们怎么来计算分数除以整数?
课前思考:
例题1结合具体的情境,帮助学生掌握分数除以整数的计算方法,书上介绍了两种方法,其中第一种方法有一定的局限性,即分子必须是整数的倍数,而第二种方法具有普遍意义。
我准备这样处理:复习导入部分的第一、二两个环节同潘老师处理方法,第三个环节改为例题1的准备题:(1)饮料瓶中有2升饮料,平均分给2个小朋友喝,每人可以喝多少升?(2)饮料瓶中有1.2升饮料,平均分给2个小朋友喝,每人可以喝多少升?
再引出例题1,让学生体会到要求“每人可以喝多少升?”这个问题,只要用总共饮料的升数÷喝饮料的人数=每人喝多少升。从而得出算式4/5÷2,在教学分数除以整数的计算方法时,我准备给学生开放的思维空间,让学生自己计算,因为数据小,部分学生可以结合生活经验得出结果,然后让学生说明计算结果的合理性,说说是怎样想的?从而得出两种不同的计算方法,对这两种方法都应给予同样的肯定。然后再出示试一试,让学生用自己喜欢的方法进行计算,在这题的计算中,学生会发现第一种计算方法的局限性,从而比较出两种计算方法的优劣。
由于本课教学内容比较简单,潘老师补充一些拓展练习,增加思维难度,让学有余力的学生也有探究的兴趣。
课前思考:
因为周一时潘老师执教了《分数除以整数》这一课时,听完课后,我就想其实这一课的难点是如何让学生在理解的基础上掌握分数除以整数可以转化为分数乘这个整数的倒数。要突破这一难点要借助学生已有的知识基础,即分数意义和分数乘法的意义。所以,我想在复习铺垫部分增加一个练习,让学生说说“4/5升、3/7米、8/9千克”等分数的意义,然后再让学生练习这样的题目:把3米的绳子平均分成4份,每份是多少米?一根3米的绳子,用去了1/4,用去了多少米?等等类似的题目。新授部分要让学生尝试用不同方法计算,然后充分体验有些方法的局限性,自然而然地接受本课时所要学习的新方法。巩固练习中要关注不同层次的学生的学习情况,及时根据学生中出现的问题调整教学行为。分数乘法和分数除以整数计算的比较也很重要,要利用好教材提供的对比练习,帮助学生进一步掌握本课时的计算方法,提高计算正确率。
课后反思:
计算课上如何让学生经历算法的推导过程,体验探索的过程是非常重要的。反思今天的数学课上,我按照课前设计的教学思路,先组织学生复习了分数的意义,然后又出示了两道实际问题进行对比,有了这样的铺垫后,学生在学习例题时自然而然地想到了分数除以整数可以转化为分数乘整数的倒数,当然有仍然有少数学生想到了其他方法。这样的情形不由得让我反省自己是否铺垫得过多,变学生自由探索为教师领路了,缺少了学生的独立思考和探索。不过,令我感到欣慰的是由于课前复习中突出了分数除法和分数乘法意义,所以在理解分数除以整数为什么可以转化为分数乘这个整数的倒数时,学生基本都能解释得头头是道,而且在巩固练习部分也是很自然地选择了转化为乘法来计算。
以后再次执教本课的话,我想在组织学生探索时,教师不能包办得太多,这样会让学生失去了探索的乐趣。认知冲突是一个人已建立的认知结构与当前面临的学习情境之间暂时的矛盾与冲突,是已有的知识经验与新知识之间存在某种差距而导致的心理失衡。认知冲突的形成能促进学生解决这一冲突的需要,从而激发学生的求知欲和探索心向。而认知冲突的形成,离不开教师的引导与激发。本课中,出示例题后学生往往会把算式和得数一下就说出来,这时就需要教师及时抓住这一制造认知冲突的良好契机。教师可以顺势问学生:“4/5÷2真的等于2/5吗?你有哪些办法说明这个结果是对的?从这些办法中,你能找到分数除以整数的一般算法吗?”开放而有挑战性的问题能激励学生主动探索。所以在设计教学预案和执行教学预案时,作为学生学习活动组织者和引导者、促进者的教师,要不断提高组织学生主动探索的有效性,这样才能切实提高课堂学习的有效性。
课后反思:
学习这节课时,我增加了两题准备题,帮助学生理解这样列式的原因。然后将教学重点定位在“如何计算?你是怎样想的?你有什么办法让别人听懂你的计算方法是正确的?请想办法来解释清楚。”于是,学生投入到积极的思考中,有学生结合生活实际,体会到“平均分给两个人喝,那么每人就喝到这些饮料的一半(1/2)”,所以求每人喝多少,就是求4/5的1/2是多少,从而想到了分数乘法。也有学生从分数的意义来解释,当我提醒学生可以画图分析时,学生的解释更加清楚了。此时选择两种方法的学生各占一半。两种方法在解决例题1时,看不出方法的优劣。当让学生选择自己喜欢的方法解决试一试时,所有的学生都选择了方法一,追问原因,让学生更加深刻体会到方法二的局限性。
从作业情况看,计算方法掌握不错,但还有部分学生在约分时没有约成最简分数,看来约分的技能有部分学生不过关。
分数除法教案 第十四篇
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、 创设情境 提出问题
(1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?
(2) 把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】
二、 自主探究 小组交流
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)
自主学习提示
1. 利用手中的的`学习纸,涂一涂,算一算,尝试解决这两个问题。
2. 同桌之间说一说彼此的想法。
3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。
【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】
三 交流释疑
1、 初步感知分数除法
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)
【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】
2、 初探算法
把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用 × 1/3?)
观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)
1/3÷5 4/5÷31/3÷5
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)
【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】
四、实践应用
1、算一算
9/10÷3015/16÷2014/15÷21 8/9÷6 5/6÷15
2、填一填
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)
【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】
五、课堂总结
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练
七.板书设计:
分数除法(一)
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2 (2) 4/7÷3
=4 /7×1/2
=2/7
聪明在于勤奋,天才在于积累。以上就是快回答给大家分享的14篇分数除法教案,希望能够让您对于分数除法的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。