1. 主页 > 知识大全 >

七年级下册数学教案(优秀10篇)(七年级下册数学教案垂线三维目标)

教学设计内容和形式应该根据需要而定,如果为了同行间探讨、交流而进行设计外,则应选择较为详细和较强的理论展现为主要内容和相应的形式,下面是快回答给大家整理的10篇七年级下册数学教案,希望可以启发您对于数学七年级下册的写作思路。

2021年最新人教版七年级下册全部数学教案 篇一

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力。

教学重点:深化对正负数概念的理解。

教学难点:正确理解和表示向指定方向变化的量。

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明。

参考例子:用正数、负数和零表示零上温度、零下温度和零度。

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义。

如:水位不升不降时的水位变化,记作:0 m.

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本P3例题)

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率。

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义。写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量。类似的还有水位上升、收入上涨等等。我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们。

巩固练习

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值。

2.让学生再举出一些常见的具有相反意义的量。

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本P6)用正数和负数表示加工允许误差。

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例。

(三)应用迁移,巩固提高

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是    .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期 一 二 三 四

增减 -5 +7 -3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用。

(四)课时小结(师生共同完成)

七年级数学下册教案 篇二

教学目标:

知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

能力目标:培养学生快速运算的能力.

情感目标:培养学生耐心细致的学习习惯.

教学重点与难点:多项式除以单项式的法则是本节的重难点.

教学过程:

一、复习提问

1.计算并回答问题:

(1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

(3)以上的计算是什么运算?能否叙述这种运算法则?

2.计算并回答问题:

(1)3x(x2x+1);(2)4a(a2a+2)

3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式。

说明:希望学生能写出

2×3=6,(2的3倍是6)

3×2=6,(3的2倍是6)

6÷2=3,(6是2的3倍)

6÷3=2.(6是3的2倍)

然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的。角度不同,让学生理解被除式、除式与商式间的关系.

二、新课引入

对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

1.法则的推导.

引例:(8x312x2+4x)÷4x=(?)

分析:

利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

解:(8x312x2+4x)÷4x

=8x3÷4x12x2÷4x+4x÷4x

=2x23x+4x.

思考题:(8x312x2+4x)÷(4x)=?

2021年最新人教版七年级下册全部数学教案 篇三

教学目标:

1.了解正数与负数是实际生活的需要。

2.会判断一个数是正数还是负数。

3.会用正负数表示互为相反意义的量。

教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

教学难点:负数的引入。

教与学互动设计:

(一)创设情境,导入新课

课件展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

(二)合作交流,解读探究

举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

讨论 什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。

总结 正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

(三)应用迁移,巩固提高

【例1】举出几对具有相反意义的量,并分别用正、负数表示。

【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?

【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。例如,9:15记为-1,10:45记为1等等。依此类推,上午7:45应记为(  )

A.3  B.-3  C.-2.5  D.-7.45

【点拨】读懂题意是解决本题的关键。7:45与10:00相差135分钟。

(四)总结反思,拓展升华

为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期 日 一 二 三 四 五 六

(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”。

(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

(五)课堂跟踪反馈

夯实基础

1.填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为    吨。

(2)如果4年后记作+4年,那么8年前记作    年。

(3)如果运出货物7吨记作-7吨,那么+100吨表示    .

(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了     .

2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米。

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力

3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

(六)课时小结

1.与以前相比,0的意义又多了哪些内容?

2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

2021年最新人教版七年级下册全部数学教案 篇四

一、学习与导学目标:

知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

A、创设情境(幻灯片或挂图)

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题……

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

(3)︱0︱= 。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

1、 幻灯片

2、 师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

最新2021人教版七年级数学下册教案 篇五

一、班级情况分析:

本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。

一(7)班有学生38人, 上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。 两班的整体成绩均不够理想。

二、教材分析:

本套教材切合《标准》的课程目标,有以下特点:

1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。

2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。

3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。

4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。

5.满足不同学生发展的需求。

三、教学目标及要求:

第一章:

1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。

2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。

3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。

4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

第二章:

1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。

2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。

3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。

4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实 。

第三章:

1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。

2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。

3.通过实例,体验收集、整理、描述和分析数据的过程。

4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。

第四章:

1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。

2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。

3.能设计符合要求的简单概率模型。

第五章:

1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。

2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。

3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。

第六章:

1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。

2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。

3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。

4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。

第七章:

1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。

2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

3.探索并了解基本图形的轴对称性及其相关性质。

4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。

5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。

四、教学改革的设想(教学具体措施)

充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:

1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。

2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。

3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。

4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。

5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。

021年最新人教版七年级下册全部数学教案 篇六

教学目标:

1.掌握数轴三要素,能正确画出数轴。

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

教学重点:数轴的概念。

教学难点:从直观认识到理性认识,从而建立数轴概念。

教与学互动设计:

(一)创设情境,导入新课

课件展示 课本P7的“问题”(学生画图)

(二)合作交流,解读探究

师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴。

【点拨】(1)引导学生学会画数轴。

第一步:画直线,定原点。

第二步:规定从原点向右的方向为正(左边为负方向).

第三步:选择适当的长度为单位长度(据情况而定).

第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处。

对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?

(2)有了以上基础,我们可以来试着定义数轴:

规定了原点、正方向和单位长度的直线叫数轴。

做一做 学生自己练习画出数轴。

试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

小结 整数在数轴上都能找到点表示吗?分数呢?

可见,所有的        都可以用数轴上的点表示;        都在原点的左边,        都在原点的右边。

(三)应用迁移,巩固提高

【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

【例3】下列语句:

①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数。正确的说法有(  )

A.1个   B.2个  C.3个  D.4个

【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数。

【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有(  )

A.1998个或1999个 B.1999个或2000个

C.2000个或2001个 D.2001个或2002个

(四)总结反思,拓展升华

数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系。它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想。大家要掌握数轴的三要素,正确画出数轴。提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数。

(五)课堂跟踪反馈

夯实基础

1.规定了     、     、      的直线叫做数轴,所有的有理数都可从用      上的点来表示。

2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是    .

3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

A.7 B.-3

C.7或-3 D.不能确定

4.在数轴上,原点及原点左边的点所表示的数是(  )

A.正数 B.负数

C.不是负数 D.不是正数

5.数轴上表示5和-5的点离开原点的距离是    ,但它们分别表示 .

提升能力

6.与原点距离为3.5个单(www.kuaihuida.com)位长度的点有2个,它们分别是    和    .

7.画出一条数轴,并把下列数表示在数轴上:

+2,-3,0.5,0,-4.5,4,3.

开放探究

8.在数轴上与-1相距3个单位长度的点有    个,为    ;长为3个单位长度的木条放在数轴上,最多能覆盖    个整数点。

9.下列四个数中,在-2到0之间的数是(  )

A.-1 B.1 C.-3 D.3

七年级下册数学教案 篇七

一、教材分析

1、教材的地位和作用

课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

四、教学形式和课前准备

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

五、教学过程分析

教学过程设计意图说明

新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1)地球上的水资源和淡水资源分布情况怎么样?

(2)我国农业和工业耗水量情况怎么样?

(3)我国不同年份城市生活用水的变化趋势怎么样?

(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

课堂小结:

1.当前水资源状况,

2.节约水资源带来的价值,

3.节约水资源的办法

布置作业

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

来源于同学们身边的数据更有说服力,同时让同学感受到节水应从我做起。

自由发言,各抒己见;把数学和生活联系起来,是学生体会到学有所用,体会到数学的应用价值。

引导学生思考、交流、梳理所学知识,培养理性思维能力,加深对资源现状的理解。

学会整理、归纳所学知识;分析课题报告。

六、自我评价

这个课题学习,应该用比较长的时间,运用所学知识对生活问题进行学习、探究。这需要学生的充分准备,然后可安排学生一起进行探讨、交流。在多媒体教室进行这个课题学习,可以充分调动学生的学习兴趣,发挥学生的各方面才能,培养学生合作学习的能力。

七年级下册数学教案 篇八

教学目标:

1、知识与技能

(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

(2)理解有理数的意义,体会有理数应用的广泛性。

2、过程与方法

通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

重点、难点:

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。

教学过程:

一、创设情景,导入新课

大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的

为了表示一个人、两只手、……,我们用到整数1,2,……

为了表示“没有人”、“没有羊”、……,我们要用到0。

但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

二、合作交流,解读探究

1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

2、给出新的整数、分数概念

引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

3、给出有理数概念

整数和分数统称为有理数。

4、有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充。

教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

三、总结反思

引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

四、课后作业:课本P5习题1。1A第1、2、4题。

最新2021人教版七年级数学下册教案 篇九

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:一元一次不等式组的解法

学习难点:一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、____________ _ 叫做一元一次不等式组。

______ _______叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

“同大取大,同小取小,大小小大中间找,大大小小解不了”

一元一次不等式组解集四种类型如下表:

不等式组(a<b) p="" 记忆口诀

(1)x>ax>b

x>b 同大取大

(2)x<ax<b< p="">

x<a p="" 同小取小

<a p="" 同小取小  (3)x>ax<b< p="">

<a p="" 同小取小  a<x<b p="" 大小取中

<a p="" 同小取小  (4)xb

<a p="" 同小取小

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为(  )

A.-1<x<2  p="" d.x≥2<="" c.x<-1 ="" b.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x>2x≥-1 的解集是_ __;

(2)不等式组x<-1x<-2 的解集 ;

(3)不等式组x<4x>1 的解集是__ __;

(4)不等式组x>5x<-4 解集是___ ___。

2、解下列不等式组,并在数轴上表示出来

(1)

四、应用与拓展

1、若不等式组 无解,则m的取值范围是 ____ _____.

五、数学日记

人教版七年级数学下册全册教案最新例文 篇十

教材分析

1、知识结构

2、重点、难点分析

重点:真命题的证明步骤与格式。命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性。

难点:推论证明的思路和方法。因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点。

(二) 教学建议

1、四个注意

(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据。

(2)注意:定理都是真命题,但真命题不一定都是定理。一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题。这些被选作定理的真命题,在教科书中是用黑体字排印的。

(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断。如“两直线平行,同位角相等”这个命题,如果只采用测量的方法。只能测量有限个两平行直线的同位角是相等的。但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等。

(4)注意:证明中的每一步推理都要有根据,不能“想当然”。①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由。

2、逐步渗透数学证明的思想:

(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来。

(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法。

(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练。首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理。在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题。

教学目标:

1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤。

2、能用符号语言写出一个命题的题设和结论。

3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力。

教学重点:证明的步骤与格式。

教学难点:将文字语言转化为几何符号语言。

教学过程:

一、复习提问

1、命题“两直线平行,内错角相等”的题设和结论各是什么?

2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)

3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)

二、例题分析

例1、 证明:两直线平行,内错角相等。

已知:a∥b,c是截线。

求证:∠1=∠2.

分析:要证∠1=∠2,

只要证∠3=∠2即可,因为

∠3与∠1是对顶角,根据平行线的性质,

易得出∠3=∠2.

证明:∵a∥b(已知),

∴∠3=∠2(两直线平行,同位角相等).

∵∠1=∠3(对顶角相等),

∴∠1=∠2(等量代换).

例2、 证明:邻补角的平分线互相垂直。

已知:如图,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求证:OE⊥OF.

分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可。

三、课堂练习:

1、平行于同一条直线的两条直线平行。

2、两条平行线被第三条直线所截,同位角的平分线互相平行。

四、归纳小结

主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识。然后见投影仪。

五、布置作业

课本P143 5、(2),7.

六、课后思考:

1、垂直于同一条直线的两条直线的位置关系怎样?

2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?

3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?

熟读唐诗三百首,不会做诗也会吟。上面的10篇七年级下册数学教案是由快回答精心整理的数学七年级下册范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。