1. 主页 > 知识大全 >

奇偶函数的性质 定义

奇函数性质:1、图象关于原点对称;2、满足f(-x)=-f(x);3、关于原点对称的区间上单调性一致等;偶函数性质:1、图象关于y轴对称;2、满足f(-x)=f(x);3、关于原点对称的区间上单调性相反等。这里高考家长网为大家分享了《奇偶函数的性质 定义》,希望在函数的奇偶性方面对您有一定的参考价值。

奇偶函数的性质

奇函数性质

1、图象关于原点对称

2、满足f(-x)=-f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质

1、图象关于y轴对称

2、满足f(-x)=f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

定义

奇函数

一般的,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

偶函数

一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。偶函数的定义域必须关于y轴对称,否则不能成为偶函数。

常用运算方法

奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数

高考家长网为大家整理的《奇偶函数的性质 定义》到这里就结束了,希望您读完之后,已经解决了函数的奇偶性方面的疑惑。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。