1. 主页 > 知识大全 >

分数的乘法教学反思(优秀8篇)(分数乘法教学反思范文大全简短)

作为一名到岗不久的老师,我们要有很强的课堂教学能力,教学的心得体会可以总结在教学反思中,那么应当如何写教学反思呢?下面这8篇分数的乘法教学反思是快回答为您整理的分数乘法教学反思范文模板,欢迎查阅参考。

分数乘法教学反思 篇一

《分数乘法(三)》的重点是理解分数乘法的意义,难点是推导分数乘分数的计算法则。分数乘分数的意义是分数乘整数意义的扩展,在学生学习了分数乘整数和求一个数的几分之几是多少后,教材先以古代名题引入,引导学生初步感受。接着开展“折一折”的活动,借助图形语言,体会“分数乘分数”的意义,初步探索分数乘分数的算法和算理。教学本节课后,我觉得以下几个方面值得反思:

1.关注学生的学习状态。教学中让学生真正主动地投入地参与到探究活动中,既兼顾知识本身的特点,有兼顾学生的认知特点和学生的已有水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,让学生经历折纸操作等过程,使学生发现并掌握分数乘分数的计算法则。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情高涨,兴趣浓厚,都想通过自己的努力,寻找发现。

2.关注学生的学习过程。让学生亲自经历学习过程:即让学生在动手操作——探究算法——举例验证——交流评价——归纳法则等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去感悟、去经历、去体验、去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。

3.关注学生的`学习方法。在引导学生经过不断地思考去获得规律的过程中,着眼点不能只在规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由特殊去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。这其间渗透了科学的学习方法和实事求是的科学精神。

另外要注意避免过于繁琐的计算,不过适量的练习还是必要的,通过练习逐步提高学生的计算技能。

分数乘法教学反思 篇二

在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。

本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:

分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。

分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。

分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则

从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。

在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。

分数乘法(二)

今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。

从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。

分数乘法(三)

今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。

在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个

数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:

一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。

三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。

可以说整体教学的效果很好。

通过今天的课我有了一下的认知:

1数形结合的思想在本单元教学中的渗透和其作用。

由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法(一)和分数乘法

(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

2对学生探索过程的理解。

在本单元的`教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

单元小结

第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:

1在新课程背景,我们还要不要进行数学训练。当前无论是创优课竞赛、各级的研究课,还是论坛、博客,大家都在热衷的讨论一些教材中的新增内容,或是探究、合作的教学方法,大家似乎都不很在意数学训练,有的教师甚至一提到

“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。

2在新课程背景下,我们需要什么样的数学训练。

数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。

(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念(快回答★www.kuaihuida.com)和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。

(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。

(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。

3新课程背景下,数学训练的地形式

数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。

根据以上的思考自己在这三节课的教学是这样安排的:

第一节:

1通过计算训练整合分数乘法法则。

2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。

3单位转化,初步应用分数乘法意义解决实际问题。

第二节:

1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。

2集体交流,剖析解题的思路。

3专项训练,理解分数条件(图形表征、语言叙述)。

4巩固练习,渗透对应思想

分数乘法教学反思 篇三

本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:

1、改变了单纯的知识传授者的身份

在本节课中,教师积极创设了有利于学生自主学习的环境:“猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行

知识灌输,不再是用原有的“教师中心”的做法,已经站到了学生的中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。

2、倡导个性化的知识生成方式

新课程实施旨在扭转“知识传授”为特征的局面,把转变学生的。学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透“自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是“教教材”,当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先“猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平“知识权威”与“无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成“不断进取,不断创新”的精神世界。

3、把握生成,与境俱进

记得一位教育专家曾经说过这样一句话:“每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到“与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有“生成价值”的问题与回答,就话答话,“与境具进”,及时引导学生针对提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到“开放”与“灵活”,充分促进学生自主和富有个性化、创造性地学习。

课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。

分数乘法教学反思 篇四

《分数乘法(二)》其实是进一步探索并理解分数乘整数的意义,并能正确计算,能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。根据第一课时学生作业反馈情况,我调整了教学模式,让学生先学后教,课堂上学生讨论明白了:谁是单位“1”,单位“1”已知的,用乘法计算(虽然这部分知识目前没有涉及),我认为适当渗透有利今后的教学。

学生的`理解也各有千秋,这体现了“不同的人学习不同的数学”,有的学生用分数加法来理解分数的意义以及计算方法;有的学生能够从整数和分子相乘,分母不变。

从编者意图可以看出:用图形来理解分数乘整数的意义是重要的,于是在计算前充分感知涂图形的过程,为后面计算打下基础。有了几节课的铺垫,学生在计算过程中没多大的错误,说明了学生对算理的理解比较清晰,很多学生对约分还是做得比较好。

但在一位学生的作业中,清楚看到这个学生没有把约分后的分母做分母,依然是原来的分母做分母。经过辅导,学生明白了道理,同时反应课堂上还存在了优生抢了课堂的风头。

数学分数乘法教学反思 篇五

“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:

(1)、让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

(2)、强化分率与数量的一一对应关系。并根据关键句说出数量关系。

(3)、帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。

对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

数学分数乘法教学反思 篇六

本节课我认为有三点:

1、创设宽松、民主、和谐的课堂氛围。课前交流,通过碰到好朋友,美国人与中国人不同的表示方式,一句“谁愿意跟老师握手?”一下子把全班同学的热情给调动起来。随后,我接着说道:“我和大家在相处中,我们相互成为了好朋友,你是怎样理解‘相互成为好朋友’这句话的?”通过此种形式让学生从感性上理解“互为”的含义,为后面学习倒数的意义作了铺垫,同时也为宽松的课堂氛围打下一个良好的基础。

2、创造一切机会,让学生自主探索。在进行倒数意义探索时,我说出两个互相颠倒的分数,让学生模仿老师在旧知的基础上也同样说出这样的两个分数,然后我的一句“你们发现了什么?”学生观察比较,进而发现规律,从直观上初步认识了倒数,并给倒数下了定义。接着,我出示×( )=1,让学生写出乘积是1的两个数,尽管倒数的意义刚刚讲过,学生要想写出这样的两个数,还是要动一番脑子的。接着,我问到:“你们是怎样这么快就找到了乘积是1的两个数?”从而在学生的回答中,捕捉有利于下一环节---倒数方法的生成的信息。“你是怎样想出这些数的倒数呢?能把方法介绍给大家吗?”求倒数的方法很简单,关键在于让学生亲历学习过程,悟出求倒数的方法。

3、提倡小组合作,在讨论中,老师真正以一个组织者、引导者的身份出现,实现互动对话式教学。在求倒数方法之后,我出示了小组讨论题:怎样求一个整数的倒数?1的倒数是几?哪些数可能没有倒数?由此学生展开激烈的讨论交流,整数的倒数就用1除以整数,1的倒数是1,0没有倒数。 “1的倒数为什么是1?”“0为什么没有倒数?” “0没有倒数是因为1÷0=0” “0作除数无意义。因此,0没有倒数。”

分数乘法教学反思 篇七

分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。

分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。

回顾分数乘法这一单元教学的备课时一直被如何处理分数乘法意义所困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。

在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。

在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/103/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练6×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。

在数量关系的理解时,紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。

在分数乘法的应用时,主要是用画线段图的方式来帮助学生建立数量与分数之间的对应关系。进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。

数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。

在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位"1",但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。

1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。

2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准,让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

3、帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。

4、加强单位化聚方法的复习,如时=( )分 吨=( )千克。

通过努力结合现实的问题情境,引导学生理解分数乘法的意义。练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。

总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

分数乘法教学反思 篇八

“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:

⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

⑵强化分率与数量的一一对应关系。并根据关键句说出数量关系。

⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。

对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的'应用题,并从中理解新旧应用题的不同结构。

教学中也显露出一些问题。主要存在于:

1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。

博观而约取,厚积而薄发。上面的8篇分数的乘法教学反思是由快回答精心整理的分数乘法教学反思范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。