1. 主页 > 知识大全 >

高二动量守恒定律教案【优秀6篇】(高中动量守恒定律教案)

动量定理动力学的普遍定理之一。内容为物体动量的增量等于它所受合外力的冲量即Ft=vm,或所有外力的冲量的矢量和。下面是快回答给大家整理的6篇高二动量守恒定律教案,希望可以启发您对于动量守恒定律的写作思路。

动量守恒定律教学反思 篇一

动量守恒定律,它是本章的核心内容,它是在学生学习了动量、冲量和动量定理之后,以动量定理为基础,研究有相互作用的系统在不受外力或者所受合外力为零时所遵循的规律。它是动量定理的深化和延伸,且由于它的使用范围十分广泛,所以学好动量守恒定律堆综合处理问题是很重要的。

本节所讲为第一课时,旨在得出动量守恒定律的'内容,并阐述清楚动量守恒的条件,在得出内容上,我秉着物理教学离不开实验的思想,采用了实验探究和理论推导共同得出动量守恒定律,在实验探究过程中,实验较成功,记录的数据充分的说明了两个物块碰前和碰后的总动量守恒,理论推导过程学生也积极参与进来,课堂气氛还算可以,达到的预期的教学目标。

后面打算对动量守恒定律成立的条件列出两道例题进行加强、巩固,但由于前面引入的时候使用的时间有点过多,导致后面时间不够,两道例题只讲了一道就下课了,因此本节课对时间的把握上拿捏的不好,致使后面安排的内容没有讲完,但本节课的目标:得出动量守恒定律已达到。

有时在想,安排好容量的课是否一定要上完才算完整,课堂的突发状况,纠正学生的回答,时间不经意的溜走,是我安排的内容过多,还是前面讲的太慢,这个疑惑有待请教有经验的老教师。

高中物理教学设计 篇二

高三复习到五月份,基本结束了前两轮的复习。但是学生在应用动量守恒定律解决问题时依然存在若干问题。比较突出的问题有:弄不清楚守恒过程和不能正确的选择研究对象等。学生屡屡出现类似问题的背后其实是忽略了守恒条件所造成。当然学生在审题中不能正确的挖掘出隐含条件也是失分的主要原因。

如何解决这一现象呢?我做了这样的教学设计。

一.回归课本,指导学生进行弹性碰撞特点的理论推导。本环节中强调守恒条件以及对弹性碰撞特点的理解。

二.归纳试题类型,找到解题模型。主要选择子弹模型、木板滑块模型、滑块碰撞模型、微观粒子碰撞模型、微观粒子衰变模型。采用讲一题练一题的方法,让学生熟悉这几个模型的解题思路和题中常见的隐含的条件。为学生解决类似题型打好基础。

三.针对多过程的运动模型,引导学生做好运动分析,逐一过程利用守恒条件分析研究对象是否动量守恒。

四.针对多物体多运动过程模型,引导学生做好受力分析,运动过程分段处理,围绕守恒条件逐一分析所选定的研究对象是否守恒。

本教学设计的优点在于由易到难,由特殊模型到一般模型,从常见问题到复杂问题。也很好的展示了利用守恒条件为解题起点,展开解题过程的示范。通过多次训练能够有效的解决学生挖掘不出常见隐含条件和弄不清守恒过程的问题。

高中物理动量守恒定律教案 篇三

教学目标:

一、知识目标

1、理解动量守恒定律的确切含义。

2、知道动量守恒定律的适用条件和适用范围。

二、能力目标

1、运用动量定理和牛顿第三定律推导出动量守恒定律。

2、能运用动量守恒定律解释现象。

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).

三、情感目标

1、培养实事求是的科学态度和严谨的推理方法。

2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用。

重点难点:

重点:理解和基本掌握动量守恒定律。

难点:对动量守恒定律条件的掌握。

教学过程:

动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律。

(-)系统

为了便于对问题的讨论和分析,我们引入几个概念。

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取。

2.内力:系统内各个物体间的相互作用力称为内力。

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力。

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力。

(二)相互作用的两个物体动量变化之间的关系

【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mAmB和作用后的位移SA和SB比较mASA和mBSB.

高二物理《动量守恒定律》教案

1.实验条件:以A、B为系统,外力很小可忽略不计。

2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0

【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同。

(三)动量守恒定律

1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。

2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB=mAvA’+mBvB’

(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度。

【注意】式中各速度都应相对同一参考系,一般以地面为参考系。

(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算。

3.成立条件

在满足下列条件之一时,系统的动量守恒

(1)不受外力或受外力之和为零,系统的总动量守恒。

(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒。

(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒。

4.适用范围

动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的。

(四)由动量定理和牛顿第三定律可导出动量守恒定律

设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt内,分别对物体1和2用动量定理得:F21△Vt=△p1;F12△Vt=△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即:

△p=△p1+△p2=0或m1v1+m2v2=m1v1’+m2v2’.

【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?

【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的。

【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:

(1)作用前后滑块A动量的增量为多少?方向如何?

(2)碰撞前后A和B的总动量是否守恒?

【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动。mAvA+mBvB=mAvA’+mBvB’

(1)vA=SA/t=0.05/0.1=0.5(m/s);

vA′=SA′/t=-0.005/0.1=-0.05(m/s)

△pA=mAvA’-mAvA=0.14_(-0.05)-0.14_0.5=-0.077(kg·m/s),方向向左。

(2)碰撞前总动量p=pA=mAvA=0.14_0.5=0.07(kg·m/s)

碰撞后总动量p’=mAvA’+mBvB’

=0.14_(-0.06)+0.22_(0.035/0.1)=0.07(kg·m/s)

p=p’,碰撞前后A、B的总动量守恒。

【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?

(1)撞后第1s末两物距0.6m.

(2)撞后第1s末两物相距3.4m.

【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒。

设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有:

mAvA=mAvA’+mBvB’;

vB’t-vA’t=s

(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动。

(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动。

【例4】如图所示,A、B、C三木块的质量分别为mA=0.5Kg,mB=0.3Kg,mC=0.2Kg,A和B紧靠着放在光滑的水平面上,C以v0=25m/s的水平初速度沿A的上表面滑行到B的上表面,由于摩擦最终与B木块的共同速度为8m/s,求C刚脱离A时,A的速度和C的速度。

【解析】C在A的上表面滑行时,A和B的速度相同,C在B的上表面滑行时,A和B脱离。A做匀速运动,对A、B、C三物组成的系统,总动量守恒。

动量守恒定律教学反思 篇四

每学期举行一次教学开放活动,已成为我校教育教学的传统贯例,很好的促进青年教师专业成长,推动学校教学研究长足发展。本次观课议课活动安排在高二年级组进行,由汪梦洁老师和孙正老师上同课异构课《动量守恒定律》,物理教研组全体老师参与听课、议课。本人把听课议课的一些不成熟的心得体会总结如下。

一、以人为本

在听中教课堂教学的核心是学生,所有的教学活动实施应围绕学生展开,以人为本是课堂教学的核心理念。故评价一节课成败的核心标准是以学生为基准,看老师的教学是否以学生为主体,看老师在课堂上是否关心人、尊重人、依靠人、发展人、满足人。用“以学论教”作为指导思想,把学生的学习活动和状态作为观课议课的焦点,以学的状态讨论教的成败。通过学生的学来映射和观察教师的教。”这充分体现了新课程的“以生为本”、“教为主导”、“学为主体”等先进的理念。两位老师在课堂教学实施环节,都体现了扎实的基本功,关注学生,关心每一位学生,倾听学生的反应,及时评价,及时反馈,以人为本,在听中教,很有亲和力,课堂互动性强。

二、换位思考

在学中教课堂教学是学生生命成长的过程。人人都有思想,都有思考的权利,在思考中能对收益和得失进行算计,并在算计中根据自己所理解的价值标准追求利益最大化。作为老师,要尊重参与者思想的权利,并搭建交流与表达思想的平台,鼓励学生在课堂教学中积极主动的思考。要防止一言堂,一味追求进度和效率而控制或剥夺学生思考的过程,包办学习过程,禁锢学生多元化的思想。“己所不欲,勿施于人”要设身处地,感身同受。两位老师都能从物理学科核心素养出发,注重物理观念的建立,积极训练科学思维,努力进行实验探究,培养学生科学态度与责任。常与学生换位思考,从学生学的角度组织实施教育教学活动。一些创新性的设计给人美的享受,听两位老师的课是一件很幸福的事,幸福其实很简单,幸福来源于创造性的劳动和对创造性劳动的审美性体验。“大创造,大突破,大快乐;小创造,小突破,小快乐;无创造,无突破,无快乐。”

三、交流互评

在议中教作为教师,课堂教学是其生命线,它的质量,直接影响教师对职业的感受、态度和专业水平的发展、生命价值的体现。研究课堂,改进课堂就是我们教师的一种伦理责任。观课议课是促进教师思想、实现专业成长的捷径,能更好地促进和实现教师发展。在听课过程中,让你情不自禁的成为了思想的参与者,在听讲中思考,在学习中感悟,把自己置身于争鸣的课堂,头脑中不停的思索两个问题:我要是学生是否听懂了?如果换了我会怎么讲解这个知识点?

在议课过程中,和谐、融洽的教学文化和教师文化,使议课者和授课者之间形成一种宽松、友好的氛围。这样的效率会更高些,效果会更有效些。教师也会在这种环境中不断成熟,发展,壮大。尤其是两位授课教师把他们自己的构思设想跟大家分享,让人有一种霍然开朗的感觉,哦!原来他是这么想的!触发了自己也想马上去上上这节课的冲动。

怀着一颗谦虚学习的心去参加评课议课活动,就不会在经历“漫长而煎熬”的炼狱中而“痛不欲生”,听听课教师谈几点自己的赞歌和一点建议,尤其是教研组长的最后总结性的“几点建议”、“几点希望”发言,就不会觉得那是一种形式,走一走过场。学校应鼓励教师基于改进和发展的目的,以自爱和互爱的方式开放课堂教学,敞开自己的教室,对自己的教学保持开放,并放下包袱,使观课议课成为对话的平台,成为促进教育教学发展的平台。

高中曲线运动教学设计 篇五

《曲线运动》这一章主要是以平抛运动和圆周运动为载体讲述如何研究做曲线运动物体的规律,而《曲线运动》这一节又是这一章的一个基础,故其在必修1、2两册教材中属于承上启下的一节内容,所涉及的两大部分内容——曲线运动的特点以及物体做曲线运动的条件,对学生以后的学习以至对动力学的理解都有很大的帮助。基于上面的分析,教学中要充分应用已有的观察和感知,已有的概念和知识,利用多种形式的教学手段,使学生对这部分知识有较深的认识。

在这节课的讲授过程中,由于考虑到了普通班学生的认知水平,我对教学内容做了调整,先讲曲线运动的特点,即曲线运动的位移和速度,在学生对曲线运动有了初步了解之后,设置问题:那么物体在什么样的条件下才做曲线运动呢?这时候学生回答要有力的作用,我把一个小钢球举起来问他们,小钢球在放手之后有没有力的作用,学生异口同声说有,我放手之后,问钢球做什么运动?学生回答自由落体运动,我追问,轨迹是直线还是曲线?又有学生喊要有初速度,我给他们分别做了竖直上抛和竖直下抛,这时候学生陷入思考,我总结:看来没有速度或力的方向和速度方向在同一直线上是不会做曲线运动的。

我就把强力磁铁贴着黑板,让小钢珠在次自由落下,到磁铁旁边发生明显的弯曲,很自然的引入到了力与速度方向有夹角时,才会做曲线运动。进一步分析抛出的铅球做曲线运动的原因,我发现学生参与的积极性比较高,课堂气氛比较好。

讲解“小船过河模型”时,总感觉学生反应不是很好,课堂气氛有点压抑,虽然在之前分析了雨滴的下落,跑步机这些运动的合成,但到后面内容上,表现不好,学生还是喜欢定性分析,不愿意定量计算。

高中物理动量定理教案 篇六

第一章 动量守恒研究

新课标要求

(1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞;

(2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义;

(3)通过物理学中的守恒定律,体会自然界的和谐与统一。

第一节 动量定理

三维教学目标

1、知识与技能:知道动量定理的适用条件和适用范围;

2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;

3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。

教学重点:动量、冲量的概念和动量定理。

教学难点:动量的变化。

教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备。

1、动量及其变化

(1)动量的定义:

物体的质量与速度的乘积,称为(物体的)动量。记为p=mv 单位:kgm/s读作“千克米每秒”。

理解要点:

①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。

大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动。显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。

②矢量性:动量的方向与速度方向一致。

综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。

(2)动量的变化量:

1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。

2、指出:动量变化△p是矢量。方向与速度变化量△v相同。一维情况下:Δp=mΔυ= mυ2- mΔυ1 矢量差

例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?

2、动量定理

(1)内容:物体所受合外力的冲量等于物体的动量变化

(2)公式:Ft = m -mv = -

让学生来分析此公式中各量的意义:

其中F是物体所受合外力,mv是初动量,m 是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。

(3)单位:F的单位是N,t的单位是s,p和 的单位是kgm/s(kgms-1)。

(4)动量定理不仅适用恒力作用,也适用变力作用的情况(此时的力应为平均作用力)

(5)动量定理不仅适用于宏观低速物体,对微观现象和高速运动仍然适用。

前面我们通过理论推导得到了动量定理的数学表达式,下面对动量定理作进一步的理解。

(6)动量定理中的方向性

例2:质量为m的小球在光滑水平面上以速度大小v向右运动与墙壁发生碰撞后以大小v/2反向弹回,与墙壁相互作用时间为t,求小球对墙壁的平均作用力。

小结:公式Ft = m -mv是矢量式,计算时应先确定正方向。合外力的冲量的方向与物体动量变化的方向相同。合外力冲量的方向可以跟初动量方向相同,也可以相反。

例3:质量为0.40kg的小球从高3.20m处自由下落,碰到地面后竖直向上弹起到1.80m高处,碰撞时间为0.040s,g取10m/s2,求碰撞过程中地面对球的平均冲力。

小结:式中的F必须是合外力,因此解题时一定要对研究对象进行受力分析,避免少力的情况。同时培养学生养成分析多过程物理问题的一般方法,分阶段法。

学生练习:有一个物体质量为1kg,以10m/s的初速度水平抛出,问经过2S时物体的动量的变化量为多大?此时物体还没落地。

小结:利用动量定理不仅可以解决匀变速直线运动的问题,还可以解决曲线运动中的有关问题,将较难计算的问题转化为较易计算的问题,

总结:

1、应用动量定理解题的基本步骤

2、应用动量定理解答时要注意几个问题,一是矢量性,二是F表示合外力。同时动量定理既适用恒力,也适用于变力;既适用直线运动,也适用于曲线运动,

3、动量定理的应用

演示实验:鸡蛋落地

【演示】先让一个鸡蛋从一米多高的地方下落到细沙堆中,让学生推测一下鸡蛋的“命运”,然后做这个实验,结果发现并没有象学生想象的那样严重:发现鸡蛋不会被打破;然后让鸡蛋从一米多高的地方下落到讲台上,让学生推测一下鸡蛋的“命运”,然后做这个实验,结果鸡蛋被打破。请学生分析鸡蛋的运动过程并说明鸡蛋打破的原因。

鸡蛋从某一高度下落,分别与硬板和细沙堆接触前的速度是相同的,也即初动量相同,碰撞后速度均变为零,即末动量均为零,因而在相互作用过程中鸡蛋的动量变化量相同。而两种情况下的相互作用时间不同,与硬板碰时作用时间短,与细沙堆相碰时作用时间较长,由Ft=△p知,鸡蛋与硬板相碰时作用力大,会被打破,与细沙堆相碰时作用力较小,因而不会被打破。

在实际应用中,有的需要作用时间短,得到很大的作用力而被人们所利用,有的需要延长作用时间(即缓冲)减少力的作用。请同学们再举些有关实际应用的例子。加强对周围事物的观察能力,勤于思考,一定会有收获。

在实际应用中,有的需要作用时间短,得到很大的作用力,而被人们所利用;有的要延长作用时间而减少力的作用,请同学们再举出一些有关实际应用的例子,并进行分析。(用铁锤钉钉子、跳远时要落入沙坑中等现象)。

(加强对周围事物的观察,勤于思考,一定会有收获。)

用动量定理解释现象可分为下列三种情况:

(l)△p一定,t短则F大,t长则F小;

(2) F一定,t短则△p小,t长则△p大;

(3)t一定,F大则△p大,F小则△p小。

海纳百川,有容乃大。上面就是快回答给大家整理的6篇高二动量守恒定律教案,希望可以加深您对于写作动量守恒定律的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。