作为一位无私奉献的人民教师,编写教学设计是必不可少的,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写呢?快回答分享了9篇《三角形面积》的教学设计,希望对于您更好的写作三角形面积公式有一定的参考作用。
《三角形面积》说课稿 篇一
一、说教材:
本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。
二、说教学目标:
基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:
1、知识与技能
(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。(说明:这里强调“过程”,即:让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。)
(2)通过多种学习活动,培养学生的抽象、概括和推理能力,培养学生的合作意识和探索精神。
(3)培养学生应用所学知识解决问题的能力。
2、过程与方法
使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。
3、情感、态度与价值观
让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。
三、说教学重点、难点:
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。
四、说教法学法:
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
1、实验法
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
五、说教学过程:
(一)复习引入,揭示课题
1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。(设计意图:要求学生完整地说明平行四边形面积公式的推导过程,锻炼学生的语言表达能力。并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)
2、揭示课题
板书课题:三角形的面积
(二)探索新知
出示问题:怎样把三角形的转化成我们学过的图形呢?
1、小组合作,动手拼摆,填写实验报告单。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)
2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)
3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)
4、小组合做,讨论问题(课件出示问题)。
问题:两个完全一样的三角形可以拼成?
每个三角形的面积等于?
这个平行四边形的底等于?
这个平行四边形的高等于?
三角形的面积公式是?
学生借助手中的图形讨论问题。
小组代表汇报讨论学习成果。
教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)
(三)巩固拓展
1、课件出示两道基本题的练习。
学生独立计算,教师指名学生上黑板板演。
课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。)
2、课件出示两道拓展题的练习。(判断题,可以组织学生小组讨论完成。“解决问题”有一定的开放性,学生可以自由选择三角板,实际动手量出三角板的底和高,再计算面积,有利于培养学生的动手能力,有利于学生学习主体性的提到。)
(四)全课总结
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)
六、说板书设计
三角形的面积
三角形的面积=底高÷2
字母表示:s=ah÷2
《三角形面积》说课稿 篇二
在学习本课之前,学生已经充分认识了三角形的特征,能熟练地计算长方形、正方形面积,并且在本单元探索活动中,学生经历了推导平行四边形的面积公式,在实际操作的过程中已经感受到了知识之间的相互联系与互相转化的思想。所以,我们在设计这节课的时候,将教会学生预习,让学生在猜想、观察、操作中自主归纳公式运用公式作为本课的侧重点。
教学目标是:
1、在实际情境中,认识计算三角形面积的必要性。
2、在自主探索中,经历推导三角形面积计算公式的过程。
3、能运用三角形的面积公式,计算相关图形的面积,解决实际问题。
教学重难点:在自主探索中,经历推导三角形面积计算公式的过程,并能解决实际问题。
教学教学准备
教学环节:
一、课前预习,初步感知。
在这个环节中,教师的行为是根据具体的教学内容指导学生进行预习。这里我们要说明的是,预习并不是放任自流,我们在研究的过程中总结了指导预习的9种方法。他们分别是:读、找、做、想、记、举、试、问、联。
所以在这节课的课前预习中,我们就指导学生先读一读教材,了解这节课我们要学习的内容是什么。然后让学生在书中的标题旁或者小刺猬的图例旁找一找这节课的知识点是什么。再引导学生根据书中的要求自己动手做一做。在实际操作之后让学生想一想为什么要这么做?还可以怎么做?然后让学生讲一讲自己操作的过程。还要教会学生问一问,问问自己还有什么不明白的或者容易错的问题。
在这个基础上,教师引领学生做七巧板拼图游戏,让学生在游戏中感受图形之间的联系。在这个环节中,重要的是要教会学生预习的方法,所以教师要跟踪检查布置的每一项任务。
二、进入情景,发现问题。
在这个环节中,教师要为学生创设情境,学生在此情境中发现问题、提出问题,感受学习本课的必要性。这个环节的关键是要引起学生的认知冲突,激发学生的求知欲。
因此在这个环节中,我们为学生设置了学校开运动会制作宣传小旗的情境。引导学生看情境图,分析要求出至少需要多少布料的关键就是要求出这个三角形的面积,教师要及时抓住主要的问题引导学生思考怎么求这个三角形的面积,在学生的讨论中,引起学生的认知冲突,让学生感到学习三角形面积计算的重要性,然后及时切入新课。
三、尝试解决,交流总结。
在这个环节中,学生要在预习的基础上与小组成员合作解决问题。通过各种不同的方法验证三角形的面积公式。教师的行为就是在学生的自主探索中适当的指导,并在学生的汇报中引导学生总结规律,强化重点。
因为学生在课前有了平行四边形面积计算的经验,又做了充分的预习,所以在这个环节中我们将重点放在学生独立尝试解决问题上。我设计的问题是:你要怎么解决这个问题。因为学生在课前已经做了预习,并且在平行四边形面积的时候已经感受到了数小格的局限性,所以在这个问题的回答上,学生很有可能直接就说出了三角形的面积公式。其实学生在没有教师讲授的时候就了解三角形的面积公式不足以为奇,关键是教师要继续追问下去为什么是底高2,这才是我们这节课要解决的重点问题,所以我们在学生预习的基础上调整了教学的顺序,变以往的教师在课堂上设计大量的环节牵引学生一步一步的推导到让学生在了解公式的前提下,自己动手操作验证结论。其实都是在教师的指导下对公式的形成进行了再一次的推导,不过在教学的顺序上发生了微小的变化,教学的要求由教师的教变成了学生自主验证,让学生充分感觉自己是课堂的主人,这样做更激会发学生的求知欲。在全班交流的过程中,学生会用两个完全相同的三角形拼成一个平行四边形,将三角形转化成我们已经学习的平行四边形进行计算,这个时候教师的作用就是要引导学生观察一个三角形与拼成的平行四边形之间的关系,强化本节课的几个重难点,引导学生发现新旧知识之间的联系,总结公式。
四、分层达标,巩固练习
在第三个环节中,我们重视的是学生自主的探索,鼓励每个学生在实践操作中展示自己的预习成果,学生可能会出现各种不同的问题,但是为了尊重学生,教师只在学习的过程中起到帮助和个别引导的作用,教师不牵引,不主导,所以,在第三个环节中会比以往教师引导学生一步一步总结的时间花费的多。因此在第四个环节巩固练习,分层达标中,我们就要用短暂的时间,根据不同层次学生的实际水平,运用多种情景的变式,通过设计饶有兴趣的练习,或新颖耐人寻味的总结,使学生牢固掌握知识。
五、自我评价,总结提高
在这个环节中,我们鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我们注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精
《三角形面积》说课稿 篇三
学习目标:
1.能用不同的方法探索并了解三角形3个内角之间的关系;
2.会利用三角形的内角和定理解决问题;
3.知道直角三角形的两个锐角互余的关系;
4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。
学习重点:
三角形的内角和定理
学习难点:
三角形内角和定理推理和应用
教学过程:
一、情境创设,感悟新知
1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”
红不服气的说:“那可不好说噢,你自己量量看!”
蓝用量角器量了量自己和红,就不再说话了!
同学们,你们知道其中的道理吗?
三角形三个内角的和等于180°
2、你有什么方法可以验证呢?
方法一:度量法。
方法二:剪拼法。
3、你还有其他说明方法吗?
二、探索规律,揭示新知
1、议一议:如,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.
理由:.
2、操作:把木条a绕点A转动,使它与木条b相交于点C.根据形,你能说明“三角形3个内角的和等于1800”的理由吗?
3、说理:
(补充说明:也可以转化为平角进行说明。)
4、方法小结:在这里,为了说明的需要,在原来的形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。
5、你还有其他方法说明“三角形3个内角的和等于1800”吗?
(1)
(2)
6、思路总结:为了说明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用思想方法。
三、尝试反馈,领悟新知
例1:如,AC、BD相交于点O,∠A与∠B的和等于∠C与∠D的和吗?为什么?
例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三个内角的度数。
若将条件改为∠A:∠B:∠C=2:3:4,又如何解呢?
四、拓展延伸,运用新知
1、随堂练习
2.结论:直角三角形的两个锐角互余。
3、巩固练习:
①、△ABC中,若∠A+∠B=∠C,则△ABC是()
A、锐角三角形 B、直角三角形
C、钝角三角形 D、等腰三角形
②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?
③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度数。
五、课堂小结,内化新知
1本节课你有哪些收获?
2你还有什么疑问?
六、布置作业,巩固新知
1、必做题:
习题7.5第1、2、3、4题。
2、选做题。
如右:试求出中∠1+∠2+∠3的度数
七、教学寄语,拓宽课堂
老师寄语:
If you wish to learn swimming,you have to gointo the water,and if you wish to become a problem solver,you have to solve problems.
如果你想学会游泳,你必须下水;
如果你想成为解题能手,你必须解题。
角形面积教案 篇四
编排意图
教材以小组合作学习的形式展现学生探究的过程。首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题;接着根据平行四边形面积公式推导的方法提出解决问题的思路:把三角形也转化成学过的图形;通过学生动手操作和探索,推导出三角形面积计算公式。最后用字母表示出面积计算公式。
教学建议
(1)本部分教学可按提出问题、寻找思路、实验探究的步骤,以小组合作学习为主的形式进行。学生已经经历了平行四边形面积公式的推导过程,要以学生在推导中获得的经验为基础,放手让学生自主去探究。
(2)学生动手操作实验环节是本部分教学的重点。按教材的编排,把三角形转化成已学过的图形,没有采用平行四边形的割补方法,而是用两个同样三角形拼摆的方法。这个方法推导过程简单,学生比较容易理解和掌握。每个小组最少应准备相同的直角三角形、锐角三角形、钝角三角形各两个,教师可提出明确的操作和探究要求:“用两个同样的三角形拼一拼,能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?”学生可能拼出三角形、长方形和平行四边形,其中长方形和平行四边形学生已经会计算面积。在小组操作和讨论的基础上组织交流。可以选择用直角三角形、锐角三角形、钝角三角形拼的三种情况分别进行汇报,要求学生能根据拼出的'图形叙述出推导的过程。在此基础上作总结归纳:
通过实验可以看到,两个完全一样的三角形都可以拼成一个平行四边形(或长方形),这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以可以推出
三角形的面积 = 底 × 高 ÷ 2
(3)根据学生的基础,也可以让学生用剪拼或折的方法进行推导,或结合教材第96页介绍的我国古代数学家刘徽的三角形面积计算方法,让学生进行推导,增强学生探究的兴趣,提高学生推理的能力。
割补的方法一般有以下几种:
①
拼成的平行四边形的底等于三角形的底,高等于三角形高的一半。
②
拼成的长方形的底等于三角形的底,高等于三角形高的一半。
三角形的面积 = 底 ×(高 ÷ 2)
= 底 × 高 ÷ 2
③
拼成的长方形的高等于三角形的高,底等于三角形底的一半。
三角形的面积=长方形的面积
=(底÷2)×高
=底 × 高 ÷ 2
折叠的方法:
折出的长方形面积是三角形面积的一半,长和宽也分别是三角形底和高的一半。
三角形的面积 = 长方形的面积×2
=(底÷2×高÷2)×2
= 底×高÷2
2. 例1及“做一做”。
编排意图
应用三角形面积计算公式解决实际问题。例1是解答引入三角形面积计算时提出的问题:怎样计算红领巾的面积?
“做一做”是计算一个直角三角尺的面积,可以把两条直角边看作底和高。
教学建议
可以在学生独立完成的基础上进行交流与汇报,说说是怎样做的和计算的结果。注意检查计算中有没有忘记除以2,针对发生的错误,可以结合前面推导的过程,让学生说一说为什么要除以2?进一步加深印象。
3.练习十六一些习题的说明和教学建议。
第1、4、5题是应用问题,解决问题的过程中要应用三角形面积计算公式。其中第1题还可以进行交通常识的教育。这些标志牌表示的含义:
注意危险 慢行 注意行人 向右急弯路
第2题没有给出底和高的长度,要学生想办法求出每个三角形的面积。学生需要先找出或画出三角形的高,再分别量出底和高的长度。
可先用小组合作形式完成或独立完成,再交流各自的做法。注意结合每种三角形的特点进行讨论。例如直角三角形以两条直角边为底和高计算最简便;钝角三角形一般会以最长的边作底,这样高就在三角形内。如果用水平的一条边作底,怎样找到高呢?可以让学生了解在钝角三角形短边上作高的方法(不作统一要求)。
第3题根据乘除法的互逆关系灵活运用三角形面积计算公式。注意在根据三角形面积和高求底时,不要忘记三角形的面积先要乘2。
第6题根据三角形面积计算公式,使学生理解三角形相等的基本条件是等底(两个三角形共底)和等高(平行线间的垂直距离都相等)。可以让学生先讨论:图中你能找到几个三角形?哪两个三角形面积相等呢?为什么?再根据等底等高三角形面积相等的道理,画出其他三角形。
第7题是运用等底等高三角形面积相等的道理去分三角形。也可以用讨论的方式进行。
分法一:
将三角形任一边平均分成4段,把各分点与对应的顶点连接形成4个面积相等的三角形。
分法二:
连接三角形三条边的中点,形成的4个三角形面积相等。
可以根据三角形中位线的性质证明出这4个三角形是等底等高。但学生还没有这些知识基础,可以通过测量证明每个三角形的底和高分别相等。
第8*题是选作题。已知两个三角形的面积和高,可以分别求出它们的底长,也就是平行四边形的两条边长。
540×2÷22?5=48(m)540×2÷18=60(m)
因为平行四边形的对边相等,所以平行四边形的周长为
(48+60)×2= 216(m)
第9*题也是选作题。可以让学生根据三角形面积公式的推导和对三角形面积相等的判别知识进行推理。平行四边形的对角线把平行四边形分成两个相等的三角形,每个三角形面积是平行四边形面积的一半;A点是其中一个三角形底边的中点。根据等底等高三角形面积相等,涂色的三角形的面积是这个三角形面积的一半,也就是平行四边形面积的四分之一。所以涂色三角形的面积是 48÷4=12(m2)。
《三角形面积》说课稿 篇五
一、教材分析:
“三角形分类”是人教版四年级下册第五单元第2节内容的第1课时,是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。
二、教学目标:
知识与技能:通过观察与操作,会按角与边的特征给三角形分类
过程与方法:经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。
情感态度:激发学生的主动参与意识、自主探索意识。
三、教学重点:学会给三角形分类。难点:会按角与边的特征分
四、学情分析:三角形学生早已接触,已经认识了直角、钝角、锐角以及三角形,在日常生活中也有丰富感知。
五、教法与学法
教法:创设情景、积极引导、主动参与、激励评价
学法:观察分析、探索思考、分组交流、独立反思。
六、教学流程
一、创设情境、激趣导入
同学们,我们已经认识了三角形,谁来说一说?有三位老朋友已经恭候我们多时了,看看它们是谁?课件出示三个角,指名回答。你能说说什么样的角是锐角、直角、钝角吗?学生一一作答。我想知道这个角是不是锐角该怎么办?(用量角器或三角板)
导入课题,课件出示由三角形拼成的小船,(每组一份)老师给大家带来了一件礼物,看看它像什么?它是由什么图形拼成的?这些三角形的形状都一样吗?这节课我们就一起给三角形分分类,板书课题。
二、自主探索、合作交流
三角形有角和边,我们学过角的分类,那三角形又可以按照什么来分呢?(按角分、边分)教师板书:角、边
(一)按角分1、学生尝试分类,小组交流后集体汇报
把三个角都是锐角的分一起板书:三个锐角
把都有一个直角的分一起板书:一个直角
把都有一个钝角的分一起板书:一个钝角
分别起名字,指名回答。(板书:锐、直、钝角、三角形)
仔细观察这三类三角形有什么异同?(同:至少都有2个锐角。异:另外一个角分别是锐角、直角、钝角)
每类三角形中最大的角跟它的名称有什么关系?引导发现(最大角是什么角,它就是什么三角形)
2、用集合图表示
如果把三角形比作一个大家庭,按角分,这个大家庭里有几个小家庭?是哪几个?指名回答,教师用课件出示集合图。
3小游戏—猜猜它是什么三角形(要看最大角不能单凭一个锐角)
(二)按边分
1教师提出要求,学生小组交流后汇报。
三条边都不相等(板书:三边不等)有两条边相等(板书:两边相等)三条边都相等(板书:三边相等)
试着起名字,教师点拨并适时板书:不等边、等腰、等边三角形。
2、明确等边三角形是特殊的等腰三角形。
提问:等边三角形是等腰三角形吗?学生展开讨论,引导学生明确:只有有两边相等就是等腰三角形。(板书:特殊)
3、用集合图表示
4、等腰三角形和等边三角形除了边的特点外,看看它们的角有什么特点?想办法验证一下。(量角器或对折)
3、认识等腰三角形和等边三角形。
腰、底角、顶角。等边三角形又叫正三角形,每个角都是60度三、巩固练习、反馈提升
1、判断、在钉子板上为三角形、完成做一做蚂蚁进洞
2、小组合作猜猜我是谁?只露一个角,可能是什么?为什么?
四、课堂总结、检测效果。
角形面积教案 篇六
教学目标
1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2、培养学生观察能力、动手操作能力和类推迁移的能力。
3、培养学生勤于思考,积极探索的学习精神。
教学建议
教材分析
本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和平行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。
本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过平移、旋转分别拼摆成平行四边形,通过发现每个三角形与拼成的平行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。
本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。
教法建议
教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习平行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。
在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想平行四边形面积公式的推导过程,启发提问:能不能也把今天学习的。三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有平行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。
本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。
《三角形面积》说课稿 篇七
说学习内容
三角形的面积是人教版小学数学第九册84至86页的内容。这个内容是在第八册认识了三角形,学会计算长方形的面积以及刚学习了平行四边形面积的基础上进行教学的,同时,与平行四边形、梯形的面积联系在一起,为以后学习圆面积和复合图形的面积计算起到铺垫作用。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。
说学习目标:
1、理解三角形面积公式的推导过。
2、正确运用三角形面积计算公式进行计算。
3、应用公式解决简单的实际问题。
学习重点:理解三角形的面积计算公式,正确计算三角形的面积。
学习难点:理解三角形的面积公式的推导过程。
根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:
1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。
2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。
学习方法上我侧重以下几点:
1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。
2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。
3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。
针对上述内容的需要,我设计了如下的教学程序:
说学习过程
一、激趣定标
(一)激趣导入
1、出示平行四边形
(1)平行四边形的面积公式。(板书:平行四边形面积=底×高)
(2) 一个平行四边形底是2厘米,高是1.5厘米,求它的面积。
2、既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
(二)学习目标
1、理解三角形面积公式的推导过。
2、正确运用三角形面积计算公式进行计算。
3、应用公式解决简单的实际问题。
说自学互动(适时点拨 )
(一)推导三角形面积计算公式、
1、用两个完全一样的直角三角形拼、
(1)教师参与学生拼摆,个别加以指导
(2)学生演示拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?
2、用两个完全一样的锐角三角形拼、
(1)组织学生利用手里的学具试拼、(指名演示)
(2)学生演示拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
3、用两个完全一样的钝角三角形来拼、
(1)由学生独立完成、
(2)学生演示拼摆图形
4、巧问质疑
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
5、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(三)正确运用三角形面积计算公式进行计算
1、教学例2
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
(1)由学生独立解答、
(2)订正答案(教师板书)
(四)应用公式解决简单的实际问题。
通过学生利用三角形的面积计算公式解决简单的实际问题,提高学生对三角形的面积计算公式的理解和解决简单的生活实际问题。
三、测评训练
通过测评训练,测评学生所学的新知识是否掌握,提高学生的计算能力和计算速度。
四、小结
同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。运用拼摆、旋转、平移的方法把两个完全一样的直角、锐角和钝角三角形分别变换成长方形或平行四边形,得出三角形的面积等于长方形或平行四边形面积的一半,然后归纳出三角形面积计算公式。
五、板书设计、
这样板书设计使学生一目了然,工整、简单、明白。
角形面积教案 篇八
第五册平行四边形、三角形面积公式
教学过程
师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?
生1:卡片。
生2:奖品。
……
师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的'面积公式无法推导。
……
教学过程
师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:S=ab2。
生4:我能把它剪成两个梯形教后反思
教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
《三角形面积》说课稿 篇九
本周周三我们四年级数学组进行了三同课活动,由我和另一位老师主讲。从结果来看,虽然做了大量的准备工作,但还是有很多值得反思的地方。
这是一个操作性和探索性比较强的一节课,一些基本的知识学习,我让学生自学。同时,我更是把主要的时间放在了学生自学以及动手操作上面,让学生经历探索的过程,真实的感知知识的奥秘。就这一点,我对自己毫不动摇,尽管有些老师和领导认为“教”还是主要的,什么探索课不是好上的,我感觉是不是因为他们怕呢?但我还是认为不能怕,要勇敢的用,我还是坚持学生“学”更重要。一节课45分钟,时间是有限的,要讲解和延伸的东西还是必要的,那么怎样安排这一节课,课堂的中心到底放到哪里?课堂的主体是老师牢牢把握,还是还给学生?这个问题,其实我心中是有明确答案的。我坚持自己的做法。
有时候,人需要给自己打打气,如果自己在坚持做的事情,没有人或很少人认可,那周围的声音一般都是丧气的声音,就好像谁死了一样,那样的场景和气氛,你怎么会心情高兴?那好,怎么办?即便是死了人一样的气氛,那也得给自己唱首歌,《今儿个要高兴》吧。由于教师自己的水平有限,或者准备的不够充分,加上学生自身的学习习惯和能力不高,在一些环节上,表现的不够完美。但是,如果不从现在开始培养,而只是一味的说先学后教有哪哪哪的弊端,说学生在讨论中出现哪哪哪的问题,我感觉这样不像一个革命者,太没勇气,不像我自己。有了问题,好好改正,既然人家的好的东西,就要大胆的学来用啊,蔡林森校长花了那么长时间和事实来证实自己的先学后教的革命意义,那东西一定不坏,所以,我想不能说什么那是人家的山,人家的水,一定有人家的根儿,我们拿不来什么的。我想提醒一句,还没离开中国这个大的教育环境的,根儿也离的不远,大胆点吧!
当然,同事们提出了很多可贵的意见和建议,都是非常有助于去提高先学后教课堂的教学质量,我都虚心接受,它有利于我的课堂走向的更加成熟。比如,需要稍微花一点时间关注学生的自学、谈论的成果,也给孩子打打气,更加的考虑到课堂上学生可能出现的问题等等。
总之,这次的三同课,在准备、讲解到评课,我都受益匪浅。
熟读唐诗三百首,不会做诗也会吟。以上9篇《三角形面积》的教学设计就是快回答小编为您分享的三角形面积公式的范文模板,感谢您的查阅。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。