1. 主页 > 知识大全 >

五年级数学《梯形面积的计算》教案【优秀14篇】

在教学工作者实际的教学活动中,通常需要准备好一份教案,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?以下这14篇五年级数学《梯形面积的计算》教案是来自于快回答的梯形的面积计算公式的范文范本,欢迎参考阅读。

《梯形的面积》教案 篇一

一、教学内容:五年级上册第88页《梯形的面积》

二、教学目标:

1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。

2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。

3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。

三、教学重难点

教学重点:

探索并掌握梯形面积是本节课的重点

教学难点:

理解梯形面积计算公式的推导过程是本课的难点。

四、教学过程:

(一)、复习旧知

出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段

同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。

学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。

【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】

(二)、探究新知

联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:

⑴自选学具。(每个小组发如下梯形图片和探究表各一份)

形状个数拼成的形状结论

……

⑵提出要求:

①做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。

②想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?

③说一说:你发现了什么,并尝试推导梯形的面积计算公式。

⑶小组合作,操作、观察、交流、填表,教师参与讨论。

【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】

⑷全班交流汇报。(教师根据学生的回答借助课件演示)

a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。

b、沿梯形的对角线剪开分成两个三角形

c、把一个梯形剪成一个平行四边形和一个三角形

d、沿等腰梯形的一个顶点做高,剪拼成一个长方形

e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形

f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。

……

对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。

(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)

⑸归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。

梯形的面积=(上底+下底)×高÷2

如果用字母s表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:

s=(a+b)h÷2

【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】

(五)深化巩固

1、尝试计算

a、计算一个一般梯形的面积。

b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:

(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?

借助模型和课件让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。

【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】

2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?

【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】

3、总结,反思体验

回想这节课所学,说说自己有哪些得失?

【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】

【教后反思】:

五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:

突出体现了两个亮点:1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,1、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。2、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。3、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)

五年级《梯形的面积》教案 篇二

教学目标:

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点:梯形面积的计算公式。

教学难点:梯形面积计算公式的推导过程。

教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程:

一、复习引入:

1、复习:

同学们会计算哪些图形的面积?

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的'面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

二、探索解决问题办法,并尝试转化

1、引导学生提出解决问题方案

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化

刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察

同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

2、计算梯形面积

平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

3、推导梯形面积公式

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

用字母表示梯形面积公式

阅读教材,加深理解

四、应用公式计算梯形面积

1、基本练习:

计算下面梯形面积

2、教学例题

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题

4、抢答题

5、测量并计算

五、总结课堂

五年级《梯形的面积》教案 篇三

重点难点

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学准备

含资料辑录或图表绘制

教学的过程

一、第2题

让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

二、第3题

右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

三、第5题

要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

四、第6题

先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的。进行补充和强化。

通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

五年级《梯形的面积》教案 篇四

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的'梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

《梯形的面积》教案 篇五

一、说教材

1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。

能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:使学生掌握梯形面积的计算公式。

难点:理解梯形面积计算公式的推导过程。

二、说教法与学法

1、根据几何图形教学的特点,我采用了以下几点教法:

①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

三、说教学过程

新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

(一)、创设情境,引出问题。

1、课件出示“神七”发射实况

2、谈话引出课题

梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

(二)、自主探究,合作交流

1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、自主探究,合作学习

学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

4、分小组展示汇报,教师深化点拔。

教师板演推导过程。

5、引导学生用字母表示公式:s=(a+b)×h÷2

6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

(三)、学以致用,解决问题

1、学习例3

(1)、借助教具演示,理解“横截面”的含义。

(2)、弄清渠口、渠底、渠深各是梯形的什么?

(3)、学生尝试计算横截面积。

〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

(四)、应用深化,巩固练习:

1、做一做:请两名学生板演。

2、课件出示练习题。

(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)

(五)、总结,反思体验

回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。

〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉

四、板书设计

板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。

《梯形的面积》教案 篇六

教学内容:人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页

教学目标:

1.通过学习,学生理解、掌握梯形面积的计算公式,并会运用。

2.学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。

3.学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。

课前准备:给每个小组准备两个完全一样的梯形、直角梯形、等腰梯形各一对,并用信封装好,剪刀一把。

教学过程

一、 创设情境,导入新课

师:我们的校园很美,现在学校准备在小操场上种上草皮进一步绿化、美化我们校园,(师出示一个近似梯形的地),这块地的形状是什么图形?现在要铺好这样一块地,学校至少要买多少草皮,就是算这块地的什么?怎样求梯形面积呢?这就是今天我们要研究的内容。

(设计意图:《数学课程标准》提出:学生数学学习的内容应当是现实的、有意义的、富有挑战性的。这里创设一个学生熟悉的情境,让学生感受到数学就在身边,学习数学是有意义的,增强学生学习数学的内在动力。)

二、 猜测验证,自主探究

1.公式猜想

师:同学们,前一段时间我们刚掌握了哪些图形的面积计算?

引导学生得出:已学过了三角形、平行四边形的面积计算

师:平行四边形的面积计算公式,我们是怎样推导出来的?三角形的面积计算公式,我们又是怎样推导出来的?

学生回答,教师出示多媒体课件,演示平行四边形与三角形的面积推导过程。

师:我们在推导这两个图形面积计算公式时,有什么共同点。(都是运用转化法,把未知化为已知)

师:这种方法很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,对于梯形的面积如何计算,同学们也可大胆地猜想一下,梯形可能转化成哪个我们已学过的图形呢?

生猜想(教师根据学生回答相机写出图形)。

(设计意图:通过对平行四边形与三角形面积计算公式推导过程的回顾,为学生推导梯形面积计算公式作了有效思维策略的铺垫。让学生对梯形如何转化进行猜想,培养了学生的直觉思维和探究意识。)

2.公式探究

师:同学们对梯形转化成什么,都作了自己的大胆猜想,但光有猜想是不够的,只有猜想就是幻想,所以我们还要对自己的猜想进行探索,通过事实来说明你的猜想是合理、正确的。现在同学们就开始对自己的猜想进行探索,这里老师提几个探索要求:

教师出示:探究要求:

(1)把信封袋中的梯形转化成已学过的图形。

(2)认真观察,发现梯形与拼成的图形在面积、边的长度上有什么关系?

(3)尝试从拼成的图形面积计算公式推导梯形面积的计算公式。

学生进行探究,教师进行相机指导。

探究后,学生汇报推导,教师引导得出如下几种推导思路:

思路一:用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成两个三个角形(如下图),得出梯形的面积等于两个三角形面积之和,从而推出梯形的面积=上底×高÷2+下底×高÷2

思路三:把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出梯形的面积=上底×高+(下底-上底)×高÷2。

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”这个公式更简明易记。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?

师:现在同学们翻开课本88-89页,阅读一下课文,并把文中的空填完整。

(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。)

三、 实践运用,体验生活

1.火眼金睛我能辨

(1)梯形面积是平行四边形面积的一半。

(2) 两个完全相同的直角梯形可以拼成一个长方形。

(3)一个梯形的上底是10cm,下底是20cm,高是10cm,它的面积是300平方厘米。

2.生活运用我能行

(1)完成课本89页做一做

(2)师:课前学校留给大家的问题还没有解决,现在我们来解决它。(师再次出示近似梯形的地)要求这块地的面积要知道什么条件?(要知道上底、下底、高各是多少)

教师出示上底16m、下底12m、高2m,学生进行计算。最后得出这块地的面积。

(设计意图:设计形式多样、层次分明、重点突出的习题,一是让学生对新知识起到巩固的作用;二是注重激发学生练习的兴趣,同时解决课始提出的问题,让学生体验到数学价值,增进学生学好数学的信心,从而主动参与学习。)

四、 评价总结,延伸拓展

师:通过学习你有什么收获?是如何学习的,还有什么问题?

(设计意图:让学生回顾学习过程,再一次体验学习经历,这个过程是学生对所学知识进行系统化、条理化的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。)

五、 作业布置

1.p90,1—4。

2.梯形面积计算公式的推导过程除了同学们在课堂上汇报的几种外,还有其它的推导形式,同学们如果有兴趣可以进一步研究。

3.梯形的面积计算公式与平行四边形、三角形、长方形的面积计算公式有着密切的关系,而且这些图形的面积计算公式都可以用梯形的面积计算公式来表示,同学们找找看是怎样的关系。

附板书设计:

五年级《梯形的面积》教案 篇七

教学目标:

1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

理解、掌握梯形面积的计算公式。

教学难点:

理解梯形面积公式的推导过程。

教学课时:

1课时

教学准备:

1. 学生准备两个完全一样的梯形。

2. 老师准备多媒体课件。

教学过程:

1.导入新课

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

2.新课展开

第一层次,推导公式

(1)操作学具

①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。

(2)观察思考

①教师提出问题引导学生观察。

a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。

①提问:想一想平行四边形面积公式是怎样推导得到的?

②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

(2)引导操作。

①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

②学生动手操作、探究、讨论,教师作适当指导。

(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。

第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的`“做一做”。

3.巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

4.全课小结

这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。

课后反思:

!《梯形面积的计算》教学反思

在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

一、提出问题,激发兴趣

我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

二、注重合作,促进交流

学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”

学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

三、思维拓展,能力提升

新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

《梯形的面积》教案 篇八

大家好,我说课的内容是北师大版小学数学五年级上册第二单元《图形的面积(一)》第6课时《梯形的面积》,梯形面积的计算是几何图形面积计算中的重要内容,同时也是学习组合图形面积的基础,在生活实际中有广泛的应用。

说教学目标和重难点

基于学生对梯形特征的认知,又刚刚获得平行四边形、三角形面积公式探索的成功体验,相信此时学生已经建立了良好的空间观念、能够熟稔地完成旋转、平移等操作活动,形成了初步的转化思想。所以教师不必让学生去数方格,直接运用转化思路求梯形的面积即可。

我制定教学目标如下:

1. (知识技能)通过动手操作活动,引导学生推导梯形面积公式,使学生能够正确地运用公式计算梯形面积。

2. (过程方法)利用图形的平移和旋转等操作演示,通过合作探索,推导并归纳出公式。

3. (情感态度)培养学生动手操作和逻辑思维能力,同时获得探索问题成功的体验。培养学生的空间观念。

教学重难点的确定依据为:一本课的教学目标。二学生的实际能力。教学重点为通过操作探索活动,掌握梯形的面积公式。巩固“转化”这一重要思想,并逐步形成习惯。正确地思路和良好的操作探索习惯在这里显得特别有价值,将成为漫漫数学长路中宝贵的财富。教学难点是经历梯形面积公式的推导过程。在高段数学教学中往往会阶段性的出现一些困难学生,所以我以预设的情境a为全班同学必须经历的过程,重复强调,多种感官刺激,去体验推导过程。

说教法学法

“纸上得来终究浅,绝知此事必躬行。”陆游道出了实践操作的意义所在。同时也依据教学内容特点、学生特点,我确定教法为:以学生为主体,引导他们在活动中相互合作,主动探索,操作验证。

学法和教法相结合,主要通过旧知迁移——操作探索——抽象概括——巩固提高过程,将新知旧知有机地结合在一起。

说教学过程

课前师生准备平行四边形、三角形、梯形卡片若干,剪刀、学生尺。小黑板出示两道拓展题。

本课教学分为五部分。

一、 复习导入

1.生说平行四边形、三角形面积计算公式。

2.生口述并演示推导过程。

3.生小结推导思路。

4.复习梯形各部分名称。

(设计意图:复习旧知、联系新知;强化转化的思想,为下面的探索活动做铺垫;复习梯形各部分名称,预防学困生在剪和拼等操作活动中,以及后面的运用公式计算时分不清底和腰。)

二、探索活动

1.示情境图,怎样计算堤坝横截面的面积?能否将它转化成我们所学过的图形?

2. 巡视,教师针对教材所列三种提示进行重难点指导。

a.转化后的图形和原梯形有什么关系?b.怎样计算转化后图形的面积,又如何得知梯形的面积。c.帮助学困生操作。

3.交流汇报。

个别学生汇报并演示,师将学生用两个完全一样的梯形拼成的平行四边形贴在黑板上。板书拼成平行四边形和梯形的关系,面积计算方法。

同桌之间互相演示过程,并口述拼成平行四边形和梯形的关系及面积计算方法。

教师指导有困难学生。

预设情境b同上供全班了解,但无需人人会做。

预设情境c做拓展项目。

(动手操作的实践活动,能够有效地组织全体学生参与到学习过程中去。这一环节同是应用“转化”的教学思想,又分为三个层次。三种预设逐步深入,针对不同层次的学生提出不同的要求,扩大了课堂教学容量,使教学内容有了深度。引导学生从多维的角度去观察、思考,用不同的方法进行转化,训练了学生分析推理等逻辑思维能力,进一步发展其空间想象力。交流汇报时教师对转化关键点的提问,强调了重点。对于预设情境a中的转化方法让不同能力的学生都来口述,同桌之间口述。这样教师能够快速了解学生对新知的掌握情况,快速发现问题、针对性的解决问题。同学之间的合作互助,也培养了他们的团队意识,不让一位同学掉队。边演示边口述,显性的语言表达引导隐性的有序思考。我是这样突破重点和难点的。)

三、总结归纳梯形面积公式

教师引导学生通过观察、思考、比较、讨论,发现上述三种计算面积方法的共性,并归纳出公式、用字母表示公式,使学生舔尝到成功的乐趣。这时教师的注意力应该不漏声色地转移到中等生、困难生身上,鼓励他们说公式,上黑板板书公式,树立其自信心。

四、练习应用公式

课堂练习是数学教学的主要环节之一,是学生形成技能、技巧,发展智力的有效方法,本节课设计了有梯度的几个练习。

1、2题属于基本练习,旨在巩固梯形面积公式。3题是综合练习,体现了等积变形,引导学生体会决定梯形面积的因素不是形状而是它的底和高。

五、小结提高

引导学生回忆刚才的面积计算过程,让他们感知到公式计算的方便性,为下面的发展性练习做铺垫。通过有一定难度的拓展题,培养学生思维的敏捷性和创造性。

最后开放式总结,培养了学生的发散思维及团队协作精神。学生通过回顾本堂课的收获,自我感悟、自我评价,培养其反思意识。使学生感受到通过努力而获得成功的喜悦,体验到数学的在生活中的实用性。从而使学生的情感、态度和价值观得到了提高。

五年级《梯形的面积》教案 篇九

教学内容:

练习十九第5~10题。

教学目的:

通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

教具准备:

将下面复习中的图画在小黑板上。

教学过程:

一、复习。

1.口算:练习十九的第5题。

2.出示小黑板。

师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

S=(a+b)×h÷2)

这个梯形的面积是多少?(学生独立计算)

二、做练习十九中的题目。

1.第7题,出示水渠模型,问:

这是什么模型?它的横截面是什么形?

渠口的宽可以看成是梯形的什么?渠底的宽呢?

渠深可以看成是梯形的什么?

(学生独立完成填表)

2.第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的`底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的面积相等。)

3.第9题,让学生独立做,做完后集体核对。

4.学有余力的学生做第16题和17题。

第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

高能不能求出来呢?怎样求?

怎样利用涂色的三角形的条件求出梯形的高呢?

三、作业。

练习十九的第6题和第10题。

《梯形的面积》教案 篇十

一、解析教材内涵

这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。

(1)两个一样的梯形拼成一个平行四边形。

(2)把一个梯形剪成两个三角形。

(3)把一个梯形剪成一个平行四边形和一个三角形。

还可以:从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。

策略与方法:

(1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。

(2)体现动手操作、合作学习的学习方式,让学生经历自主探索的过程

(3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。

“梯形面积的计算”

二、 复习导入

1、单元知识梳理,揭示转化思想

师:同学们,我们在多边形的面积这一单元已经学习了平行四边形和三角形面积计算方法,那谁来说说怎样计算它们的面积?

师:请大家回忆一下,它们的面积计算方法是怎么推导出来的?

2、导入主题

师:我们都是把它们转化成学过的图形来研究面积。看来转化这种方法能帮助我们解决很多问题,今天这节课我们就借助这个方法来研究梯形的面积。(板书课题:梯形的面积)

三、利用转化,实践探究 1、初步的想法,互受启发

师:同学们来看,这是一个梯形。现在呀,就请大家想一想,怎样利用转化的方法知道梯形的面积怎样来计算呢?

2、动手实践,主动探知。

师:大家这样一说,我们的思路就打开了。其实还有很多方法,同学们没有说到。接下来我们就按照这个学习提纲深入地探究梯形面积的计算方法。

1、运用转化的方法,将梯形转化成学过的图形。

2、借助学过的方法推导梯形面积的计算方法。

3、填写学习单,小组进行交流。

3、交流反馈(学生拿学具到实物展台汇报,教师拿事先预设的大教具评价,记录)

预设:代表1:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以:

s=(a+b)×h÷2

代表2:把一个梯形分成两个三角形,其中一个三角形的底等于梯形的上底,高等于梯形的高;另一个三角形的底等于梯形的下底,高等于梯形的高。所以:梯形的面积=三角形1的面积+三角形2的面积

=梯形上底×高÷2+梯形下底×高÷2

=ah÷2+bh÷2

代表3:我把一个梯形分成一个平行四边形和一个三角形。平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高;而三角形的底等于(梯形的下底-梯形的上底),三角形的高等于梯形的高。所以:梯形的面积= 平行四边形面积+三角形面积

= 平行四边形的底×高+三角形的底×高÷2

=ah+(b-a)h÷2

代表4:把梯形上下对折,沿着折痕剪开成两部分,并拼成一个平行四边形,平行四边形的底等于( www.kuaihuida.com 快回答…梯形的上底+梯形的下底),平行四边形的高等于梯形的高÷2,梯形的面积等于拼成的平行四边形的面积。所以:

(a+b) ×(h÷2)

4、总结规律

师:同学们把梯形转化成我们学过的图形,推导出它的面积计算方法,并用字母式表示了出来。大家来看:教师将以上的公式整理成统一的公式。

5、找联系,字母归一

师:看来无论哪种方法我们都可以总结为梯形的面积计算方法就是

板书:梯形的面积=(上底+下底)×高÷2

S=(a+b)×h÷2

6、全课总结

师:同学们用了不同的方法推导出梯形的面积的计算公式是。。。。。。

四、课堂练习,知识巩固 学生练习本打8个格子,训练小组长批改。

1、口答:列式计算。(梯形图形3道)

2、解决问题 (梯形大坝)

3、车玻璃贴膜。(4个条件)快速列式?今后要选择需要的条件来解决问题。

4、篱笆问题 (书中课后练习)仔细读题,认真思考,在本子上列出算式,自批。

靠墙边围一个花坛,围花坛的篱笆长46米,求这个花坛的面积?

课件出示:闪3条边,闪上下边。为什么是3条边?

五、课堂反馈,作业预留

1、基本练习数学书90页第1题

2、解决问题:90页第2题、124页

3、变式练习:97页第1题。

4、阅读作业:①、还有哪些方法?②、阅读数学书。

《梯形的面积》教案 第十一篇

一、教学内容分析:

1、教学主要内容:书27页

2.教材编写特点:

这一教学内容是在学生学会平行四边形、三角形面积的计算并形成一定空间观念的基础上进行教学的。教材编写时注重把学生当作教育的可开发资源进行挖掘,让他们通过操作,进一步学习用转化的方法思考,同时继续渗透割补、旋转和平移的思想,以便于学生理解梯形面积的推导公式。

3、教材编排特点

(1).从求堤坝横截面做好防洪工作准备的实际情境引入,说明数学在现实生活中的存在,使学生感受知道“梯形的面积计算”的必要性,通过模型演示,使学生了解横截面的含义。

(2).通过已学的知识,如三角形的面积、平行四边形的面积等公式,将梯形转化成已学图形,来推导出梯形的面积计算公式。

4、我的思考

《梯形的面积》这一课的教学重点是认识是面积公式的推导,已经利用梯形面积计算公式解决实际问题。

在设计这一课的教学时,我主要考虑体现以下这样几个方面:

1、紧密联系生活。让数学源于生活,归于生活。

数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

2、体现学生的主体性,让每个学生都能主动参与学习。

学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习

的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。

3、着重体现学生主动建构知识意义的过程。

本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

二、学生分析

1.学生已有知识基础:学生已经学习了平行四边形、三角形面积的计算。

2.学生已有生活经验和学习该内容的经验:五年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。

3.学生学习该内容可能出现的情况会很多,因为通过将新知转化为旧知进行梯形面积公式的推导,方法应该会有很多种,因此教师要给学生多一点时间思考。

4.在探索过程中利用小组合作学习方式,一定要在独立思考的基础上,另外,有可能学生在操作的过程中可以将提醒转化为已学图形,但在面积推导的过程中会出现问题,因此,有必要将推导过程中出现的问题和全班学生一起商量,探讨。

5.我的思考:学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。课中让学生通过观察、比较推理得出结论。以及如何将新知与旧知及相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。

三、学习目标

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在拼剪中感受数学知识的内在美,体验创新的乐趣。

四、教学活动

活动

内容

活动的组织与实施

设计意图

时间分配

导入新课,认识千米

出示情境:求堤坝横截面面积

师:什么是“横截面”,生可能回答有“侧面、一边”等等。

师:出示堤坝的模型,帮助学生理解“横截面”

师:横截面是什么形状的?

生:梯形。

师:要求横截面的面积,就是要求梯形的面积。

梯形的面积该如何求呢?

师:和学生一起回忆平行四边以及三角形面积计算公式是如何推倒的。并请学生示范三角形面积计算公式如何推导的。(注:重点让学生回忆起将两个完全一样的三角形拼成平行四边形来进行推导)。

师:那我们能不能将梯形也转换成已学图形来推倒出它的计算公式呢?

生:可以!

让学生发现问题,需要找到解决问题的方法。增强学生学习的主动性。

5

尝试推导公式

师:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式。

提纲:

(1)用两个完全一样的梯形可以拼成一个________________形。

(2)这个平行四边形的底等于____________________,高等于___________________.

(3)每个梯形的面积等于拼成的平行四边形面积的____________________.

(4)梯形的面积=____________________________.

学生通过已学知识来尝试推导新知,培养他们独立探究的能力,节时高效。

6

探索梯形面积计算公式的推导

师:刚利用两个完全一样的梯形拼成平行四边形推导出梯形的面积计算公式。那么现在你能不能将一个梯形转化为我们所学过的图形来推导出梯形的面积计算公式呢?下面以小组为单位,尝试着进行推导。

生小组合作探究,师巡视指导。

学生进行汇报:

1、可以把梯形转化为两个三角形,两个三角形面积的和就是梯形的面积。

2、可以把梯形先分成两个小梯形,再转话成平行四边形。转化成的平行四边形的面积的一半就是原来梯形的面积。因为平形四边形的高是原来梯形的高一半。

3、将体形分成一个平行四边形和一三角形。平行四边形和三角形面积之和就是梯形的面积。

4、可以将梯形的上底延伸到一个顶点,就变成了一大三角形,大三角形的面积减去小三角形的面积,剩下的就是梯形的面积。

……

师:在学生讲解的过程中板书他们的方法。

另外如遇到推导过程有难度的,师可以稍做讲解,帮助学生理解。

小结:梯形的面积计算公式:

梯形的面积=(上底+下底)×高÷2

师:如果用s表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面积公式用字母表示可以怎么写?

生:s=(a+b)×h÷2

师:利用一分钟的时间记忆。

通过小组合作的交流与探索,发现新的方法,让学生了解到方法多样化,在探索的过程了解到数学的神奇。培养学生的合作意识,提高学生的学习兴趣。

24

解决问题

师:现在我们已经知道了梯形的面积计算公式,那么能不能利用它求出堤坝的横截面的面积呢?(能!)那么请你们求出堤坝横截面的面积。

集体订正

把所学知识应用到实际生活当中去

5

拓展

应用以及练习

完成课后习题。特别是第四题,让学生各自交流自己的想法,得到最简便的方法求出圆木的根数。

教学反思:课标的基本理念就是要让学生“人人学有价值的数学”,梯形的面积计算无外乎是上底加下底的和乘高除以2,要记住这个公式很容易,然后再花大量的时间进行各种题形的训练,学生的确可以很快算出答案,考出很高的分数,可是,对于他们实践能力和创新思维的培养却没有提供任何的时间和机会,在新的教学理念的指引下,学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

五年级《梯形的面积》教案 第十二篇

教学目标:

1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

教学重点:

理解并掌握梯形面积公式,会计算梯形的面积。

教学难点:

自主探究梯形面积公式。

教具准备:

CAI、完全一样的梯形若干个。

学具准备:

每生准备两个完全一样的梯形。(有等腰、直角、一般)

课前预习:

梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。

课前准备:

谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

教学过程:

一、创设情境,激发兴趣。

(出示情境图)。

谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

师:根据发现,你能提出什么数学问题?

学生观察情境图,提出问题。

生:1号甲鱼池的面积有多大?

师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

生:1号甲鱼池能放养多少甲鱼苗?

二、自主探究梯形的面积计算方法。

1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

生:梯形。

师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的'方法。

2.小组讨论交流,教师巡视了解。

3.展示、汇报交流。

师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

师:谁有不同的方法?

生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:这个同学说的太好了。大家认为这个方法好不好?

这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

生:平行四边形的底,平行四边形的高。

师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

师:这个方法是不是所有的两个完全一样的梯形都可以用。

生:是两个直角梯形。

师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

第一种是把梯形分割成一个三角形和一个平行四边形;

第二种是把梯形分割成两个三角形;

第三种把两个完全一样的梯形拼成了一个平行四边形。

表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

生:上底和下底,高

生:与腰有关。

师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

三、探究操作,推导出梯形面积公式

(一)出示问题,明确目标

我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

师板书:两个完全一样的梯形拼成平行四边形

梯形的面积=拼成平行四边形面积÷2 =底×高÷2。

拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

(二)自主探究

合作学习

小组内讨论交流。

学生分组动手操作,教师巡视指导。

教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

(三)成果交流,质疑解难

1.全班展示回报

师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

师:你们也是这样想的吗?哪个小组再来说说你们的做法?

2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

板书面积公式:梯形的面积=(上底+下底)×高÷2。

提问:(上底+下底)×高算的是什么?为何要除以2?。

4.学习字母表达式

谈话:谁能用字母表示?说说每个字母分别表示什么?

师:S=(a+ b )×h ÷2(板书)

四、运用知识,解决情景问题。

师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

五、随堂检测,巩固目标。

师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

挑战自我:

一、判断

1、两个梯形就可以拼成平行四边形。()

2、梯形的面积一定比平行四边形的面积小。()

3、在下图中平行四边形的面积是梯形面积的2倍。()

师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

二、(挑战自我)

解决问题

1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,

这个梯形台的平面是多少平方米?

2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

师:显示我们聪明才智的机会到了,请同学们大显身手。

4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

学生独立练习,全班交流。

六、小结。

通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?

同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。

五年级《梯形的面积》教案 第十三篇

教学目标:

1、通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

2、在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

1、公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

2、教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的'同在联系和区别。

二、练习巩固

1、独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

2、完成第14题

先议:

⑴左图是什么图形?求面积需要哪些条件?怎么取得?

⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

《梯形的面积》教案 第十四篇

今天我说课的内容是:

一、说教材

1、说教材的地位和作用

《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

2、说教学目标、重点、难点

根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:

知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

二、说学生

由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。

三、说教学策略

根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:

1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、采用“小组活动,合作探究的教学方法”。

在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。

3、采用直观教学法。

在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。

通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。

四、说教学实施过程

基于上述认识与理解,我对梯形的面积教学流程作了如下设计:

第一环节:创设情境,导入新课

上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。

第二环节:动手操作,探究新知

新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。

第三环节:合作探究,发散验证

在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。

这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到 既突出“重点”,又化解“难点”的目的。

第四环节:应用公式,解决问题

数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:

第一题:是判断题,加深学生对推导公式的印象。

第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。

第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。

第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。

第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。

练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。

第五环节:课堂回顾,总结收获

成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。

海纳百川,有容乃大。以上就是快回答给大家分享的14篇五年级数学《梯形面积的计算》教案,希望能够让您对于梯形的面积计算公式的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。