身为一位优秀的教师,我们要有一流的课堂教学能力,对学到的教学新方法,我们可以记录在教学反思中,快来参考教学反思是怎么写的吧!为了加深您对于解决问题的策略的写作认知,下面快回答给大家整理了14篇五年级数学下册《解决问题的策略》教学反思,欢迎您的阅读与参考。
解决问题的策略教学反思 篇一
1、课前沟通不到位。
在一个陌生的环境,又有一些老师听课,孩子们本来就紧张,课前不仅没有做到及时与孩子们沟通,帮助他们减压,还用录播开始无形中又增加了压力,以至于原来在教室里积极活跃的孩子们,一个个下的正襟危坐、不敢越雷池一步,甚至到前面板演时腿发抖。作为教师课前一定要关注孩子的状态,及时做出调整。
2、课堂预设不到位。
在让两个孩子板演计算过程环节用时过长,以至于虽然完成了研究、总结、提炼出了解决两个未知量的问题可以用假设策略,但是没有时间做一些相应练习去加深印象。如果在学生选择方法书写环节意识到这一点,调整成投影展示,不仅可以完成强调步骤的完整条理,也可以空出时间加大练习。
虽然本节课没有完美落幕,虽然课堂练习度没有达到,但是在独立思考、小组交流、全班汇报,比较提炼假设策略等环节中,孩子们了解了什么情况下可以用假设,假设的关键是什么,假设的目的是什么,在假设时什么量不变,什么量改变。书写巡视中发现虽然步骤不是太完整,但是都能用自己喜欢的方法把假设策略表达出来。课堂上不可能做到面面俱到,本节课只要让孩子们了解到这些,在下节课着重强调书写格式是不是会更好!
解决问题的策略 篇二
内容:教科书p68-69教学目标:1、 让学生在解决实际问题的过程中,进一步学会用列表的方法整理稍复杂的信息,并运用从问题想起的策略分析数量关系,寻找解决问题的有效方法。2、 让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。教学重难点: 用从问题想起策略分析数量关系教学准备:挂图等教学过程: 教 师 活 动学 生 活 动复习 揭示课题一台织布机3小时织布84米,如果织8小时可以织布多少米?要求:先用列表的方法整理信息,再解答。指名说解题思路,并说说用列表的好处一台3小时84米一台8小时?米独立列表解答,交流思路上节课我们学习了用列表和画图的方法整理信息,运用这种策略,我们可以解决更多的问题。今天我们继续学习解决问题的策略(板书课题:解决问题的策略)教学例题出示例题中的已知条件小芳家栽了3行桃树、8行苹果树和4行梨树。桃树每行7棵,苹果树每行6棵,梨树每行5棵看了这些信息,你有什么感受? 认真读题 仔细分析信息比较多出示问题:桃树和梨树一共有多少棵?如果用列表的方法整理信息,解决这个问题,有必要把所有的信息都整理进去吗?你能根据问题列表整理信息?(巡视 个别辅导)展示学生所列表格 不需要都整理,只要用到“与桃树、梨树有关的信息”独立列表整理信息桃 树3 行每行7棵梨 树4 行每行5棵分析数量关系,你打算从哪里想起?怎样想?小组讨论 交流 可能有两种思路(分别从问题、条件想起)请列式解答巡视 适当进行指导每一步求的是什么?独立列式解答 交流 说意思3×7=21(棵) 4×5=20(棵)21+20=41(棵)试一试出示问题:苹果树比桃树多多少棵?要求:列表整理,分析数量关系,解答展示学生表格和答案桃 树3 行每行7棵苹 果 树8 行每行6棵独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵) 8×6=48(棵)48-21=27(棵)你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路)独立提问题,设计表格,填表列式解答 互相交流 比较小结刚才列的表格有什么相同的地方?分析数量关系的方法有什么相同的地方?思考 交流组织练习用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形?长(米)8765宽(米)1234面积(平方米)8141820引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。想一想,如何围面积最大?指出:在确定长方形周长后,长和宽越接近,面积就越大。 独立填表交流填表情况观察每组数据讨论交流 8×1积最小,7×2、6×3积依次增大,5×4积最大,“想想做做”第1题选择列表、不列表的答案予以展示共同交流分析图意,收集信息独立解题 (列表、不列表皆可)“想想做做”第3题展示学生作业 共同评议怎样分析数量关系的?每步求的是什么?可以怎样检验我们的解答对不对?独立填表 解答 交流分析数量关系的思路互相说每步的意义口述检验过程课堂总结这节课你学习了解决问题的哪些策略?有什么收获?还有什么疑问?根据学生回答总结互相交流 布置作业“想想做做”第2题要求:练习本上整理条件,作业本上解答 教学随笔:
解决问题的策略教案 篇三
一、故事引入,初步感知
[电脑出示]曹冲称象图片
曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?
今天我们就来研究如何用替换的策略解决问题。[板书课题]
生活中有哪些地方是用替换来解决问题?
二、出示问题,探索运用
[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?
读题,从题目中获得哪些信息。
你是怎样理解小杯的容量是大杯的这句话?[电脑出示]
这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?
学生说两种替换的过程。为什么要把大杯换成小杯?
四人小组合作。
要求1、画一画,选一种替换方法画出替换过程。
2、说一说,应该怎样替换,并且如何计算。
小组展示汇报。
怎样检验结果是否正确?学生口头检验。
解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?
我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。
三、拓展应用,巩固策略
1、[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?
学生独立完成。并说出想的过程。
为什么不把饼干替换成牛奶来考虑?
2、[电脑出示]在2个同样的大盒和5个同样的`小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?
读题,从题目中获得哪些信息?
与例1相比,有什么不同的地方?
每个大盒比小盒多装8个这句话你是怎么理解的?
怎样替换?
学生独立完成并核对。
3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?
四、小结全课,优化策略
《解决问题的策略—— 一一列举》 篇四
教学内容:五上第63~64页的例1、例2和练一练。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行用“一一列举”的策略解决实际问题。教学难点:能有条理的一一列举,并进行分析教学准备:课件、小棒、表格、一。谈话导入课前谈话:有谁听说田忌赛马的故事,你能简单的给大家叙述一下?谈话:同学们,在四年级我们已经接触过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法、谋略)那么你们还记得我们曾经学过哪些解决问题的策略吗?(画图,列表)引入课题:今天我们就继续来学习解决问题的策略(板上课题)二、自主探究,运用列举(一)创设情景,引出问题(1)创设情景:看,这是哪里?下面我们就一起走进东山公园:现在公园里工人师傅用18根1米长的栅栏围成一个长方形花圃的景点。供游客们休闲和拍照。那有多少种不同的围法?师:从题目中你获得了哪些数学信息?生:用18根1米长的栅栏围成一个长方形花圃。(18根1米长的栅栏围成的长方形周长就是18米。)(2)动手操作:师:愿意帮助工人叔叔吗?下面就以小组为单位拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手来围围看。(同桌合作摆牙签,教师巡视摆一摆),写出你摆的长方形长和宽分别是多少?谁先摆好谁就站起来给大家展示一下。①汇报交流:生1:长8,宽1米。生2:长5,宽4米。……一一展示学生得围法师: 刚才同学们利用小棒围一围列举出了各种围法,但运用摆小棒寻求答案感觉怎样?生1:用小棒摆有点烦。生2:很乱,答案可能有重复和遗漏师:有没有办法有序的、很快一个不落的将所有的围法都找出来?你们准备怎么做?生1:有顺序的一一列举出师:边板书边一起列举?这种方法我们把它叫做文字列举。板书文字列举除了以上几种情况,还有不同意见吗?你们是怎么想的?生1:18根1米长的栅栏围成的长方形周长就是18米。所以长和宽的和只要是9米。师:真不错,那除了用文字列举的方法之外,还有不同的方法吗?生1:列表列举师:板书列表列举拿出课前准备的表(教材p63)长方形的长/分米 长方形的宽/分米 长方形的面积/平方分米 学生完成作业纸小结师:对于这类问题的解决我们可以用文字列举法,也可以用列表整理的方法,用这两种一一列举的方法能够有序、一个不落的把各种情况找出来。师板书:有序、不重复( 3)观察 发现师: 现在我们已经找到 4种不同的围法,因为现在围的是长方形花圃,供游客们休闲和拍照。如果你是工人师傅你会选择那种围法?生:第4种(长5宽4)师:为什么?生:因为第4种围法围成的长方形最大,可以供更多游客拍照。师:是吗?请同学们口算出各个长方形的面积,再检验一下是不是第4种(长5宽4)面积最大。师:仔细观察表格中的长、宽、面积,你发现了什么?小组讨论一下?教师小结:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。所以你们的选择是有道理的。
解决问题的策略 篇五
“解决问题的策略”教学设计
教学内容:苏教版《义务教育课程标准实验教科书数学》四年级(上册)第65~67页。
教学目标
1.使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
2. 使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学过程
一、 动画引入,感受“策略”
1.谈话:同学们喜欢看动画片吗?(播放动画《曹冲称象》的故事,播放至曹操质疑“大象有多重呢”)大象有多重?称大象,没有那么大的秤!又不能杀掉大象。在大家一筹莫展的时候,曹冲究竟想出了一个什么样的策略?(板书:策略)
2. 小结:曹冲想到把大象转化成同样重量的石头,称出石头的重量,就知道大象的体重了。这是一个很好的策略!
其实,在日常生活和数学学习中,为了解决实际问题,需要运用很多策略。(板书:解决问题)
二、 解决问题,初步体验“策略”
1. 学会列表。
谈话:我校同学开展了“快乐读书”的活动,为了及时记下读书心得,大家到文具店购买笔记本。(出示例题情境图)
引导:仔细观察情境图,你知道了哪些信息?怎样才能看得更清楚一些?
引导:老师给大家介绍另一种整理信息的方法。出示表格:
可以先把题目中小明买笔记本的信息填在表格第一行,第二行填谁的信息?(小华)“5本”填在哪里?“多少元”填在哪里?完成下列表格:
你觉得列表整理信息有什么好处?(清楚、简洁)
小明
3本
18元
小华
5本
?元
2. 引导学生利用表格,分析数量关系。
小组讨论:求小华买5本用去多少元,可以怎样想?怎样才能求出1本笔记本的价钱?
提问:你能列式解决这个问题吗?练习本上列式。
三、 尝试解决问题,进一步体验策略
1. 列表解决问题。
出示:如果“小军用42元买笔记本,他买了多少本?”你能先列表整理再解答吗?(学生自己填表)
提问:要解决这个问题,可以怎样想?先在小组里说一说。
全班交流,列式解答。
2. 回顾解决问题的过程。简化表格发现规律。
这张表格我们可以再简化:把小明、小华、小军买笔记本的本数和用去的钱数用箭头对应起来。
学生在书上第66页填出括号里的数。
3 本 → 18 元
5 本 → ( )元
( )本 → 42 元
观察:从左往右看,你发现了什么?(本数与钱数对应,每本价钱不变)要求5本多少元和42元买几本,都要先算出什么?
观察:从上往下看,又发现什么?(本数增加,要付的总数增加)如果买10本,要付的钱跟42元比会怎样?
四、 解决问题,巩固策略
1. 完成“想想做做”第1。(略)
2.挑战自己:“8枝钢笔一共要用多少元?补充合适的条件,再解答。
五、全课总结。
张翠红
2 0 0 9 .1 1
解决问题的策略教案 篇六
【教材内容】苏教版六年级上册《解决问题的策略——替换》
【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。
【教学目标】
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
【教学重点】
用等量替换的方法实现问题的简单化,并相应的解决问题。
【教学过程】
一、曹冲称象导入
师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)
播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)
生:当时还没有这种技术。
师:谁还想说?(那为什么称石头就能称出大象的重量呢?) 师:是的,由于古代的技术落后,不能直接称出大象的重量,可是曹冲能想到把一船石头的重量代替大象的重量,称出了大象的体重,真
了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)
二、教学例题1
师:大臣们见到曹冲那么聪明,都非常高兴,于是出了一个问题考考他,可是聪明的曹冲想了很久,也没办法解决,你想知道是什么问题吗?
师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)
生自由说。
师:720÷7 ?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。
师:看,这样的杯子,能用720÷7吗? 生:不能
师:为什么?
生:(因为杯子的大小不一样)—— 可以多问几个学生
师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?
让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。
师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。
师:你从题目中获得到什么信息?
(720毫升果汁、6个小杯、1个大杯)(师板书)
理解关键句
师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)
(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)
师:其实,也就是一个大杯的容量相当于3个小杯的容量。
独立思考,合作探究
1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。
同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)
2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程! 3、课件演示学生所回答的思路。
师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有?(生:9个小杯)现在就可以先求出?(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。
4、板书小结:
师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。
5、请学生说第二种方法的思路
师:诶?这组算式呢?对吗?谁知道他的`想法? 生回答
6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)
师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出?(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。
7、完成板书:
师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。
师:你们也都像他们这样解决吗?
检验
师:到底正不正确呢?我们还要对它进行?
生:检验。
师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说? 生:用240+80=720ml所以正确。
师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)
师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。 总结:
师:刚才我们用什么策略帮助曹冲解决难题的? 生:替换 师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)
师:那为什么要替换?
生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。 师:你替换的依据是?
生:小杯是大杯的三分之一。
师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量 替换 同一种量)
师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)
三、巩固应用
师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。
1、一壶水2400毫升,这壶水可以倒满8个小杯和2个大杯,小杯的容量是大杯的1/2,小杯和大杯的容量各是多少毫升?
从题目中,我们知道小杯的容量是大杯的( ),也可以理解为1个大杯的容量等于( )个小杯的容量。
如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=( )个大杯的容量。
如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=( )个小杯的容量
2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成( )个小箱,4个小箱可以换( )个大箱,如果把大箱都换成小箱,则共有( )个小箱。
3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元? (留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。 )
四、全课总结:
师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。
师:其实,在我们的生活中,运用替换策略来解决问题的随处可见,比如:(课件出示)在2个同样的大盒和5个同样的小盒里装满球,正好100个,每个大盒比小盒多装8个,每个大盒和小盒各装多少个?
师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。
解决问题的策略 篇七
用“一一列举”的策略解决问题
张家港市实验小学 庞烨铃教学内容:五年级(上)第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行分析,用“一一列举”的策略解决实际问题。教学难点:能有条理的一一列举,发展思维的条理性和严密性。教学准备:课件、小棒、表格、扑克牌。教学过程:一、导入课题。今天庞老师和你们是初次见面,给你们带来了一份见面礼,想看吗?好,我们一起来看一部短片。(课件播放:猜猜职业。)刚才的短片中一共提到的了几个不同的职业?有人说5个,有人说4个,看来意见还不统一。回忆一下,具体是哪些职业呢?刚才同学们将这些职业一个一个列举了出来(板书:一一列举),庞老师的问题也就迎刃而解了,其实啊,“一一列举”也是我们解决数学问题时经常要用到的一种方法。好,上课铃声已经响起,上课!今天我们一起来学习“解决问题的策略”(板书课题)。二、新课教学(1)、情景创设,呈现问题。老师家东面有一块空地,我想请工人师傅用18根1米长的栅栏围成一个长方形的花圃。(课件出示:用18根1米长的栅栏围成一个长方形的花圃。)你从这句话中知道了什么数学信息?你是怎么知道周长是18米的?真了不起,你连这隐藏的数学信息也找出来了,周长是18米,那么说明长和宽怎么样?真是说到庞老师心里去了。(课件出示:友情提醒:花圃的长和宽长度之和为9米。)想一想:怎样围面积最大?(课件出示:思考:怎样围面积最大?)工人师傅可犯难了,该怎么围呢?同学们,怎么帮工人师傅解决这个问题呢?自己想一想。把你的解决办法在小组里交流一下。指名交流。那长和宽可能是多少呢?有没有本领一个不落的都“一一列举”出来?这么自信啊,那就请同学们将这些围法记录在草稿本上,有困难的同学可以借助小棒围一围,或者想其他的办法解决。庞老师还给同学们提供了一张表格,你也可以将这些围法记录在这张表格中。设计意图:策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材中原本设计的问题是“王大叔用18根一米长的栅栏围一个长方形羊圈,有多少种不同的围法?”,我将它改为“用18根一米长的栅栏围一个长方形花圃,怎样围面积最大?”一来更联系实际生活,花圃是学生在现实生活中随处可见的,而且后者的提法更富有探究价值,更具有开放性。策略的形成源于问题的挑战性,学生的学习兴趣盎然,思路才放得开。(实物投影展示同学填写的:选择文字记录和表格记录的,表格再选择有序和无序的,下面增设面积一栏的。)这两位同学都找到了这四种围法,你们认为哪种填法比较好?为什么?有条理地一一列举(板书:有条理)可以帮助我们快速有效地找出所有的围法。为什么还增设长方形的面积这一栏?现在你知道哪种围法围出的长方形面积最大吗?你是怎么知道的?((课件出示:面积计算结果)请同学们再次观察这张表格,你们有什么新的发现?在小组里交流一下。学生交流。想一想,在周长不变的前提下,这些长方形分别是什么样的?当长方形的长和宽的数据相差越大时,围成的长方形就越扁,它的面积就越小;反之,长方形的长和宽数据越接近,这个长方形就越接近正方形,面积就越大。设计意图:学生通过列表解决了问题,进一步引导形式学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?你有什么感悟?”这样数形结合,进一步激发了学生探究的心理冲突和不满足的欲望,为形成富有理性的数学思考积累了经验。回忆一下,我们采用了什么策略解决这道题?通过有条理地一一列举可以将答案展示的更清楚、更全面,分析问题更直观,下面我们继续用“一一列举”的策略来解决问题。(2)循序渐进,深入问题花圃围好后老师去购买花苗,有三种花苗可供选择:(课件出示图片)兰花、蝴蝶花、月季花。庞老师最少买( )种花苗,最多买( )种花苗。(课件出示:最少买( )种花苗,最多买( )种花苗。)(学生回答后课件补充完整)(课件出示:思考:老师一共有多少种不同的购花方案?)你打算用什么策略解决这个问题?列举时,打算先考虑购买几种的情况?接下去又要怎样思考呢?请同学们分小组讨论,看哪组能通过列举得到正确的答案,并用自己喜欢的方式做好记录,愿意用表格记录的可以填在庞老师提供的表格中。(学生交流,具体介绍是怎么列举的,同步展示表格的填充。)购花方案
只买1种
买2种买3种
兰 花
蝴蝶花
月季花通过列表可以将一一列举的结过展示的一目了然,我们一眼能看出是否有重复有遗漏,这是一种科学有效的整理方法。设计意图:例二的教学着重抓三个环节。第一、要帮助学生准确的理解题意。第二、要指导学生有条理地分别考虑只买1种、2种、3种各有几种具体的订阅方法。第三,通过列表画“√”的方法展现学生“一一列举”的思考过程。但考虑到这一部分难度较大,绝大多数同学连这一张表格的意思都看不懂,所以采取了“由点到面”的策略,有能力的同学先完成,然后让他们讲解这张表格是怎么设计的怎样填写的,更好的帮助学生理解这种策略如何在表格中展现。你认为要得到全部答案,列举时要注意什么?指出:要得到全部答案,列举时要有条理,这样才能“既不重复,也不遗漏。”(板书:不重复不遗漏)三、应用巩固。1、现在我们来放松一下好不好。老师这里有一张靶纸,分内、中、外三圈,里面的10、8、6谁知道是什么意思?谁愿意来投投靶。(学生投靶)每人投两次。庞老师也打算来试一试,如果老师投中两次,有多少种不同的情况?(课件:投中两次,有多少种不同的情况?)请在草稿本上列举出所有可能的答案。(课件:投了两次,有多少种不同的情况?)这两个问题含义一样吗?那可能得到多少环?设计意图:由于本节课的内容思维强度教大,学生可能会产生疲劳的感受,因此本环节安排一个掷飞镖游戏使学生放松,既可以帮助学生理解题意,又很自然地引出题目。通过两个问题的一字之差的比较,提醒了学生要看清题目。2、下面我们继续解决生活中的一些问题。听,这个问题和什么有关?(播放钟声)(出现闹钟图片)有一个音乐钟,每隔一段相等的时间就发出铃声。已经知道上午9:00、9:40、10:20和11:00发出铃声,那么下面哪些时刻也会发出铃声?13:00 14:40 15:40 16:00思考一下,你打算用什么策略解决这个问题?动笔写一写。然后在小组里交流一下。指名交流。询问间隔40分钟是怎么知道的?3、一副扑克牌有四种花色,从中任意抽出一张或两张牌,那么有多少种不同的选择方法?学生实际操作四张牌,用自己喜欢的方式记录。学生交流。四、全课总结通过这节课的学习,我们又认识了一种新的解决问题的策略 “一一列举”,随着你们知识的增长,将来一定会发现更多、更妙的解决问题的策略。五、课堂作业用48个1平方厘米的正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?长/厘米宽/厘米周长/厘米
解决问题的策略教案 篇八
余东中心小学何叶萍
教学内容
苏教版数学四年级(上册)第65-67页。
教学目标
1、在解决简单的实际问题的过程中,初步体会用列表、摘录的方法相关信息的作用,学会用列表或摘录的方法简单的实际问题所的信息。
2、进一步积累解决问题的经验,体悟解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学过程
一、呈现问题,感受信息的必要性
出示情景图,提问:同学们仔细观察这幅图,并说说从图中你能知道些什么信息?
学生充分交流。
结合学生的“无序”交流,教师组织学生根据所获得的信息提出问题。
教师板书:
(1)小华用去多少元?
(2)小军能买多少元?
二、解决问题,自主探究信息的方法
1、提问:要解答“小华用去多少元”,需要的条件是什么?
指名用简洁的语言陈述。
学生回答后,让学生将发言的内容,即所要解决的问题和所需要的条件出来。
18元买3本,()元买5
学生的可能有:
3本要18元,小华买15本
小明买3本用去18元,
小华买5本用去()元
教师组织学生观察,比较,评说,在交流的基础上,引导学生列表。
教师在小黑板上绘出空表格,学生完成填空:
小明3本18元
小华5本()元
小明3本18元
小华
小明
小华
提问:下面我们来解决问题,你是看原先的购物图呢,还是看你的内容?为什么?
学生小组交流后在全班交流,然后独立解答。
指名汇报,教师板书:
18÷3=6(元)
6×5=30(元)
再让学生口述算式每一步表示的意义。
2、谈话:再来看问题2,大家会信息吗?
学生自主,展示学生的内容。
师生评议学生的结果。
指名板演解答,其余自练。
评析板演的解法,口述算式每一步表示的意义。
引导比较,强化信息的方法。
讨论、交流:
A把刚才解决的两个问题联系起来比较,在计算方法上有什么相同的地方,有什么不同的地方?
B把解决两个问题的数据合,你发现了什么?
结合学生的回答,教师引导学生发现:本数在变化,钱数也在变化;本数与钱数发生了相对应的变化,不变的是——每本的价钱。
3、引导学生反思:在解决这两个问题的过程中,你感受最深的是什么?
三、巩固应用,提高信息的自觉性
1、完成“想想做做”第1题。
学生根据题目中的条件和问题列表,教师巡视,对有困难的少数学生作个别指导。
展示学生的结果。
提问:通过,解题的感觉如何?
学生列式解答,教师指名板演,
师生评析板演。
2、完成“想想做做”第2题。
学生独立、解答,指名板演。
提问:大家觉得在这里解决问题要注意什么?
四、揭示课题,提升对信息意义的认识
谈话:回顾一下,今天的数学课我们探讨了——列表,摘录。这些都是解决问题的`策略。(板书课题)
今天所学习的列表、摘录问题信息等策略,都能使信息得到简明的表达,方便我们理解,有助于顺利解题。下一节课我们还要继续探讨解决问题的其他策略。
五、课堂作业
完成“想想做做”第3、4题。
教后反思:
教材中的例题及练习是我们比较熟悉的、以往被称之为“归一”、“归总”的内容,但在苏教版教材中,这部分内容的教学定位已发生了变化。在本课的教学过程中,解决问题不是目的,而是在解决问题的过程中,让学生学会用列表的方法来问题信息,体验解决问题中的思考策略。教学时采用了由扶到放的教学策略,通过引导,放手让学生用多种方式来摘录条件和问题,然后让学生来评论、比较、鉴别,从而认可最简洁的一种,形成共识;接着教师绘制表格,让学生填写。这里一方面相信和尊重学生,任由学生来摘录和信息;另一方面又不失指导点拨的教学主导作用,引导学生走向规范简洁的列表。
解决问题的策略教案 篇九
一、解决问题的策略
二、完成想想做做:
三、整理信息,解决问题
四、应用拓展
1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店,
问:这道题和例题有什么不同?
你能根据题意自己独立画线段图整理。
展示学生的线段图,并让学生说说自己是怎样想的。
补充合适的。问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。
2、比较两题,找联系。
说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。
什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的速度再算总的路程。……)
五、完成想想做做:(做在作业本上)
1、先画图整理,再解答。
2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。
3、读题后问:这道题和例题有什么联系?你会解答吗?
解决问题的策略 篇十
教学内容:五上第63~64页的例1、例2和练一练。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行用“一一列举”的策略解决实际问题。教学难点:能有条理的一一列举,并进行分析教学准备:课件、小棒、表格、教学过程:1 情景引入 师:王大叔有个大的农场,我们一起来看看王大叔的农场,从图上你能看到些什么?他想用栅栏把一块地围起来,在里面可以养羊,养牛等 。。。噫 ,大家来看我们的王大叔 正在发愁,到底他碰到什么问题了呢?(出示问题)王大叔打算用18根1米长的栅栏围成一个长方行羊圈,问:能有多少种不同的围法?师:大家愿意帮助王大叔解决这个问题吗? (板书:解决问题师:1,看了这个问题,你有什么想说? 2,你觉得围羊圈,要确定什么?(长,宽)同桌讨论。其中有信息吗?还有关于长,宽的信息吗?长+宽的和是多少?(估计学生有可能回答会有遗漏或是重复,所以有必要让学生感到要按一定的程序来一一列举出来,那就是只能从长方形的周长来考虑,)根据意思发现围成的长方形的周长是一定的等于18 再根据长方形的公式: 周长=(长+宽)×2即 18=(长+宽)×2 得出:长+宽=9也就是只要满足这个条件的列出来就可以了[这样列举的好处是既不重复也不遗漏 ]3,可以列出表格:同桌合作填表。 师:如果有困难,可以借助小棒摆,也可商量。4,投影交流学生的作品:(分别是无序的,重复的,遗漏的,正确的)。师:你最欣赏的是哪张表格?生:第4张,因为很有顺序,既不重复,也不遗漏的一一列举。长方形的长/米8765长方形的宽/米1234板书:一一列举法。 :师:这也是数学上解决问题的一种策略板书:策略。根据表格我们很容易看出,能有4种不同的围法 你能想象这四个长方形的样子吗?师:如果你是王大叔,你会选择哪一种围法? 生:第4种,因为它的面积最大,可以养更多的羊。师:为比较面积大小,我们就要把每一种面积都要算出来。学生对照列表分别计算长方形的长8765长方形的宽1234长方形的面积8141820师;这些长方形的周长一样,看看他们的长,宽和面积,你有什么发现?生:我发现长和宽差距越大 ,面积越小,长和宽差距越小,面积越大师:你观察的很仔细、(及时表扬) 我们看表格上的长在逐渐变小,宽在逐渐变大,面积也在逐渐变大。师:有了同学们的帮助,相信王大叔可以不用再愁了,下面我们来看一个公交车的问题。练习:中山桥是1路和2路公共汽车的起使站。1路车早上6时20分开始发车,以后每隔10分钟发一辆车。2路车早上6时40分开始发车,以后每隔15分钟发一辆车。这两路车几时几分第二次同时发车?1,独立完成在书上 2,交流,生说师演示。1路车6:206:306:40 2路车6:40 二、 教学例、2师:前段时间大家都在忙于订书,现在这里有3本书,你想订什么?看,图上有3本书可以订阅,小华想最少订阅1本,最多订阅3本。他有多少种不同的订阅方法?[先独立思考再把你的方法说给小组听]师:你准备用什么方法来解决这个问题?(生1:我通过列举法来做)独立做在1号本上,让学生板演。(预设,学生的方法会出现多样化)1]我先考虑只订阅1本有3种不同 的订阅方法(1、2、3)2]再考虑订阅2本,也有3种不同的订阅方法([ 1 ] [2 ] /[ 1] [3 ]/[2] [3])3]最后3本全订阅,只有1种方法[1][2][3]综合考虑加起来3+3+1=7种不同的订阅方法生2: 我通过列表法来做 ,列一 张表,画“√”表示订法 订阅方法只订1本订2本订3本《少年儿童》 √ √√ √《七彩语文》 √ √ √√《天天数学》 √ √√√ (列表做注意要让学生理解表格的意义了,了解在做的时候要照着看)最终也得到一共有7种不同的订阅方法小结:看来用一一列举的策略来解决问题,可以使我们有序,不重复,不遗漏的将方法展示出来。师: 同学们真棒,出色的完成了一个又一个需要动脑筋的问题,现在大家来轻松一下,玩个飞镖游戏吧 。(出示飞镖盘) 师 : 现在这个盘上共有3 圈,如果你投中内圈,就得10环,投中中圈得8环,投中外圈得6环 ,现在我告诉大家我投中了两次,你估计我可能得到多少环?[学生独立思考]生:可能得到的总环数有5种。(即是:10+10=20,10+8=18,10+6=16,8+8=16,8+6=14,6+6=12。)五,全课小结:今天我们学习了什么?你有什么体会?解决问题要注意什么? 用你所学的方法看看小宁的路线。 小宁从家到少年宫,如果只是向东、向北走,一共有多少种不同的路线可走?
解决问题的策略教案 第十一篇
教学目标:
1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。
2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。
3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。
教学难点:让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。
教学准备:
教学过程:
一、知识再现
1.提出问题:
(1)同学们,上节课我们又掌握了一种解决问题的'策略,它是什么呢?
(2)我们通过画什么样的图来分析问题?
(3)运用画图的策略来解决问题有什么好处呢?
2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的价值。(板书课题)
二、基本练习 画线段图解决问题。
1.完成教材第52页“练习八”第4题。
让学生独立画出线段图。
2.完成教材第53页“练习八”第10题。
让学生根据题目中的信息将教材上的线段图补充完整。
这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。
教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?
引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。
让学生独立解答,组织汇报。
3.完成教材第54页“练习八”第11题。
组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。
三、综合练习
用画示意图的策略解决问题。
1.完成教材第53页“练习八”第8题。
这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:
然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。
2.完成教材第54页“练习八”第13题。
让学生在图上画一画,将长方形扩大成正方形。
3.完成教材第52~54页“练习八”其余习题。
学生独立完成。
四、反思总结 通过本课的学习,你有什么收获? 还有哪些疑问?
五、课堂作业 《补》
解决问题的策略教案 第十二篇
【教学内容】
苏教版《实验义务教育课程标准实验教科书数学》五年级(下册)第88-89页例1、例2,完成练一练和练习十六的第1、2题。
【教学目标】
1.使学生学会运用倒推的策略寻求解决问题的思路,并能根据实际问题确定合理的解题步骤,从而有效地解决问题。
2.在解决问题的反思过程中,感受倒推的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。
【教学重点】:学会用倒推的解题策略解决实际问题。
【教学难点】:根据具体问题确定合理的解题步骤。
【教学准备】:多媒体课件。
【教学过程】
一、激活经验,感知策略
1.出示:选择其中一道进行填写,比一比,看谁做得又对又快。
① □ 7 □ 9 54
②一个数乘上4,再除以7后得12,这个数是□ 。
你选择了哪道习题?选择这道习题的原因是什么?你能发现这两个问题有什么共同的特征吗?简单说说自己的解题思路。
2.揭题:
刚才我们在选择习题时发现,第一小题比第二小题更加形象、直观,所以我们解决问题时,我们可以把题中的条件变成示意图或摘录出来,有利于减轻思维的难度(请一名学生上去演示一下化繁为简的技巧)。师利用两道题的共性引出课题策略(板书:倒过来推想)
这种从结果出发,倒过来推想的策略,在我们的生活中和数学学习中经常使用,是一种重要的解决问题的策略。今天我们这节课,就来研究这一解决问题的策略。(板书:解决问题的策略)
[设计意图:通过调动学生原有的知识尝试解决新问题的过程,唤醒学生已有经验,为倒推策略的探索提供了着力点,促进新认知的高效建构。]
二、初步体验,提炼策略
1.出示例l,提出问题。多媒体动态呈现问题(教材第88页例1)。
师:这儿有两杯果汁,从图中你可以了解到哪些数学信息?
讨论:(出示问题)
①现在的两杯果汁和原来比,发生了怎样的变化?什么变了,什么没变?结合学生回答,板书。
②知道了现在两个杯子现在的果汁数量,可以怎样球原来两个杯子中的果汁数量?可以用怎样的方法来解决?
提出问题:要求原来两杯果汁各有多少毫升?
2.解决问题
①学生自主填写课本第88页的表格。提出要求:边填边思考表格中的每个数据是怎样推算出来的。
甲杯/ml
乙杯/ml
现在
原来
②同桌交流,互相说说说说是怎么推算的。
③全班交流,反馈。
结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙杯呢?
交流:展示学生的表格,说一说想法?
追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)
3.回顾反思
师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的呢?
先独立思考,同桌交流后,集体反馈。
小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。(完成板书:原来: 倒过来想一想 现在)
小结:倒过来推想就要从现在的数量出发,根据各自发生的变化往回推算出原来的数量,也可以简称倒推的策略。(板书课题:解决问题的策略倒推)
[设计意图:通过学生熟悉的生活情境,在解决问题的过程中,激活学生思维。借助多媒体动态展示题中的信息和问题,使学生感受到这类问题的结构特征,师生在互动对话中建构数学模型。接下来通过看一看、倒一倒、填一填、算一算、说一说,学生初步学会用倒推的策略解决实际问题,体验到倒推过程与变化过程的相反性,感悟倒推的顺序,为例2多步倒推的探究过程做好了良好的心理定向和认知铺垫。]
1.探索例2
出示例2:(教材第89页)
师:哪位同学来读读上面的信息?
师:学习了例1后,同学们都信心十足,能自己独立解决这个问题吗?两点学习建议。
多媒体呈现:
①你能把题目中的条件和问题摘录下来进行整理吗?
②你准备用什么策略解决这个问题?在小组内交流想法,列式并解答。
2、学生独立思考,小组交流,解决问题,教师巡视指导。
3.集体交流反馈。
谈话:谁愿意把你们小组的想法和大家一起来分享的?
学生展示自己的作业纸,说一说想法。
追问:要求小明原来有多少张邮票,你们是用什么策略想这个问题的昵?
结合学生的展示引导学生列式。
学生可能出现的情况:
第一种:
52+30-24=58(张)
师:先倒推哪一步?再倒推到哪一步?倒推时的过程与原来的变化过程相反吗?
第二种:
52+(30-24)=58(张)
师:原来这两个变化的过程可以合二为一吗?现在比原来少6张,现在有52张,把这少的6张补起来就可以得出原来的张数了,52加6的过程;是不是用的倒推法。我们把它变成了一步倒推的题目了。
3.检验。
我们用不同的方法求出小明原有58张,结果是否正确该如何验证呢?
在学生交流的基础上让学生检验。
[设计意图:给学生提出学习建议,让学生主动探索,深化理解倒推的策略。学生在自主探索的过程中,因为思维的深度参与,必然决定了学生对获得策略过程的经历是深刻的。在汇报交流中,对两种方法的比较,体会到倒推不是解决问题的唯一策略,但却是一种重要的思想方法。检验答案是否正确,再次让学生体验事情的变化是有顺序的,从而感悟到有条理的'思考是很重要的先让学生用自己喜欢的方法整理信息,再启发学生逆向推想,突出倒推的思路。]
四、应用巩固,深化理解
1.纸牌还原游戏(先用文字出现,学生熟练后师口头说,学生还原):
师:我国著名数学家吴文俊先生曾说过数学好玩,如果我这有4张纸牌,按照一定的顺序操作:把四张纸牌排成一行,将第1张和第3张交换位置,再将第2张和第4张交换,翻开看到的结果。这四张牌原来是怎样放的呢?
2.完成练一练
引导:如果你是小军,会怎样拿出画片的一半多1张?
学生独立完成后组织交流。
3.哪几道题选用倒推的策略解答?请你列出算式。
(1)方方和元元原来共有60张画片,方方给了元元5张画片后,两人的画片同样多。原来两人各有多少张画片?
(2)小明今天带了12元钱去学校,买了一支钢笔用去5元,小红又还给他4元,小明身上还有多少钱?
(3)一辆公共汽车从澄中开往青少年活动,经过瑞佳广场站时,下来了14人,又上去了10人,现在车上有乘客44人,你知道车上原来有多少名乘客吗?
五、回顾反思,拓展延伸
今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以李白喝酒为题材编了一道算题:
李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?(灵活调度,如果时间不允许,留置课外思考)
师:你认为什么样的情况适合用倒推的策略来解决问题呢?怎样运用呢?
小结:如果某种数量经过一系列变化后,已经知道了现在的结果,要求原来的数量,就可以用倒推的策略。先从结果出发,一步一步往前倒推,直至求出答案。在倒推的时候要注意变化顺序。(板书:变化顺序)
六、课外书面作业:完成练习十六第1、2题。
[设计意图:在解决问题后,对解题的过程和策略进行反思,使学生认识到是如何运用倒推的策略来分析并解决具体问题的,体会到倒推策略的问题特点,从而建构倒推策略的模型,由感性认识上升到理性认识。课后的拓展延伸,使学生感知倒推的策略在生活中的价值,同时润物无声地渗透思想教育,激发学生课后探究的浓厚兴趣。]
解决问题的策略 第十三篇
教学内容:教科书第91页例2,第92页“练一练”第1、2题。教学目标:1、使学生在解决问题的过程中,初步学会用假设的策略,分析数量关系,确定解题思路,并有效地解决问题。2、使学生感受假设的策略是为了先满足一个条件,进而感受再用替换的策略调整以满足另一个条件,感受这两种策略结合后解决问题的价值,进一步发展分析、综合和简单推理的能力。3、使学生进一步积累解决问题的策略意识,获得解决问题的成功体验,增强学习数学的信心。教学重点:会用“假设”的策略分析数量关系,用“替换”的策略调整,从而有效解决问题。教学难点:理解“假设”是为了满足第一个条件,“替换”是为了进一步满足第二个条件,理解替换的过程、替换次数就是换得的物体的数量。教学过程:一、复习引入师:同学们,以前我们已经学习了一些解决问题的策略。还记得有哪些策略来解决问题呢?(一一列举、列表、倒推、画图、替换。)师引入:解决问题的策略还有很多。今天我们要继续研究解决问题的策略。(板书课题)二、教学例题1、出示:21人去黄山湖公园划船,一共租用了5只船。大船每只坐5人,小船每只坐3人。大船和小船各租用了多少只?师:首先,我们一起来看这样一个问题。从题中你知道了哪些信息?那么,你认为怎样租船最合理(好)?(没有空位;每只船都坐满……)师:要解决这个问题,我们要满足哪几个条件?(一共5只船;只能坐21人,也就是只有21个座位)师:你认为可以用什么策略来解决这个问题呢?请自己先想一想,再把你的想法在小组里交流。2、汇报方法师:谁先来说说你的想法?(1)一一列举
大船小船总人数1417人2319人
生汇报,师适时提问。师:你怎么知道小船是4只呢?能坐多少人?你怎么想到大船要变成2只呢?(大船太多了;一只大船比一只小船能多坐2人…….)师:哦,我明白了,你就是把一只小船——换成了一只大船。 现在要坐21人,怎么办? (再把一只小船替换成一只大船)课件演示过程。师:这时候,大船是几只?小船是几只?能坐多少人?问题解决了吗?齐答。小结:刚才,我们先满足5只这个条件,想大船1只小船4只,发现总人数17人不满足第二个条件,就用替换的方法,把小船替换成大船,直到两个条件都满足为止。 其实,我们就是假设了大船是1只,小船是4只来思考的。 你还有别的假设方法吗?(还可以怎样假设?)(2)假设全是大船师:那也就是说大船几只?小船呢? 总人数25人是怎样得到的?(板书:5×5=25人)师:需要5只大船吗?为什么不需要? (因为还有4个空位) 4个空位你是怎么知道的?(板书:25-21=4人) 怎样才能减少这4个空位呢? (把大船替换成小船)师:哦,把大船替换成小船,替换1次,结果会怎样? (减少2个空位)2个空位你是怎样得到的?(板书:5-3)师:可现在有4个空位,要替换几次?2次可以怎样算?(板书:4÷(5-3)=2)师:我们把大船替换成小船,替换了2次就可以得到哪种船的只数?为什么?(大替换成小,替换了2次就有2只小船。)(板书:小)(3)假设全是小船师:也就是说大船几只?小船呢? 15人是怎样得到的?(板书3×5=15人)你怎么知道还有6人没坐到船?该怎么办?(把小船替换成大船)为什么要把小替换成大?(能多坐2人)替换几次?可以怎样算?(板书:6÷(5-3)=3)替换了3次就得到3只什么船?3、小结师:同学们,刚才我们解决这个问题时,用了什么策略?有的同学用了一一列举、列表、画图……你喜欢哪种?说说你的理由。 三、巩固练习1、 师:你们都比较喜欢这种方法,那你能用这种方法完成下面的填空呢?出示:六年级同学制作了176件蝴蝶标本,分别在13块展板上展出。每块小展板贴8件,每块大展板贴20件。两种展板各有多少块?假设全是()展板,一共能贴()件蝴蝶标本。与176件相差()件标本,每块大展板与每块小展板相差()件。应把()展板替换成()展板,要替换()次,才能满足176件这个条件。所以,()展板有()块,()展板有()块。师:260件是怎样算的?为什么要把大展板替换成小展板?替换6次是怎样想的?替换6次就有6块什么展板? 比较这两种方法,有什么相同的地方?2、师:你能用假设和替换的策略解决下面一题吗?出示:鸡和兔一共8只,数一数腿有22条。你知道鸡和兔各有多少只?学生汇报做法,说明每一步的想法。师:可以怎样检验? 四、课堂小结师:今天我们学习了——?什么策略?其实解决问题的策略很多,我们在解答时可以灵活选择策略。像今天这样的问题,我们不能直接找到解答的方法,就可以用假设的策略先满足一个条件,再进行替换满足第二个条件,最终解决问题。
解决问题的策略教学反思 第十四篇
经历了第一课时的学习,学生基本掌握了列表法,但是仍然有部分学生不懂得列表的好处以及怎样列表来思考分析问题。因此本节课上我注意让学生仔细观察列表例题,发现信息比较多,比较乱,从而想到用列表的方法来整理条件,而在整理的过程中要学生抓住关键字,用简洁的语言表述出准确的意思,并且将有关联的条件找出来,要从表格中就能看出题目的完整意思,可以通过表格找到解题的关键点。通过让学生先自主整理列表,再汇报讨论,让学生明确条件虽多,但我们只需要整理与问题相关的条件即可。
本节课我觉得也有几点不足:
1、通过随后的练习,学生还没有自觉养成用列表法解决问题的习惯,如果没有要求让列表,学生是不愿意列表的,导致时常做题出错。
2、当学生列表后,课堂中没有让学生多进行据表分析,对于整理好的表格进行分析得不够,可能也是因为我觉得这部分知识学生分析起来不太困难,但回想起来如果让一些后进一点的学生说一说,多分析一下这些表格,对于他们用此方法再解答一些更复杂的实际问题可能会有一些更大的帮助。
3、课堂上学生的小组交流不够多,虽然在教案中我设计了让小组活动交流的时间,但在实际的课程中,真正让学生交流看法的活动只有一次,而且个别学生在交流在做与课堂无关的事,说与课堂无关的话,使小组交流变成了形式。在后面的教学中应该严加要求努力加以改进。
汉屈群策,策屈群力。快回答为大家整理的14篇五年级数学下册《解决问题的策略》教学反思到这里就结束了,希望可以帮助您更好的写作解决问题的策略。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。