作为一名无私奉献的老师,很有必要精心设计一份教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?该页是漂亮的编辑给大伙儿整理的数学小学六年级下册教案【优秀5篇】,欢迎参考,希望对大家有所帮助。
六年级数学下册教案 篇一
设计说明
1、立足于学生已有的知识经验,借助旧知展开教学。
本设计充分利用“黄豆营养成分”这一情境,对教材内容略做调整,通过让学生自己提出问题并解决问题的活动方式,自然引出“求一个数的百分之几是多少,用乘法计算”这一新知,调动学生已有的知识储备,与分数乘法应用题作比较,体会两种问题的共同特征,以实现新旧知识的自然过渡。
2、渗透数学思想,促进学生对数学本质的探究。
在对一个数乘百分数的算法的`探究中,当学生发现可以将百分数转化成分数和小数来计算时,我向学生提出了“将新知识转化成学过的知识来解决问题”是学习数学的好方法这一理念,这既能对学生的学习方法进行指导,也能对学生进行数学思想的渗透。一节好的数学课,不仅要求教师完美地将数学知识呈现给学生,更重要的是让学生从数学学习中获得有价值的思想方法,这些在学生的后续学习中会用到,数学课的魅力应该体现在对学生思想的启迪上。
课前准备
教师准备,PPT课件
学生准备,收集有关食物营养含量的信息
教学过程
⊙创设情境,激趣导入
1、创设情境。
师:(手里拿一把黄豆)请同学们估一估,这些黄豆大约有多少克?(约250g)
师:你们知道黄豆中含有哪些营养成分吗?(蛋白质、脂肪、碳水化合物等)
师:你们的想法和营养学家检测出来的结果是一样的,营养专家还检测出了有关数据,让我们一起来看一看吧!
课件出示:黄豆中的蛋白质含量约占36%,脂肪含量约占18%,碳水化合物含量约占25%。
师:你能从中发现哪些数学信息?
2、引入新课。
师:你们知道我手中的这些黄豆含有多少克蛋白质吗?这节课我们就来解决有关蛋白质含量的问题。(板书课题:营养含量)
设计意图:教师通过手拿黄豆的情境,结合课件,让学生了解到原来黄豆含有这么多有营养的物质。教学从生活实际出发,激发学生的学习兴趣,让学生在现实情境中体会和理解数学,发现生活中的数学问题。
1、解决蛋白质含量的问题,应该如何列式?
(1)师:我们已经收集到了很多关于黄豆营养含量的问题,你们能利用收集到的信息,设计一个求蛋白质含量的问题吗?
(学生提取有用信息,编写题目:黄豆中的蛋白质含量约占36%,在250g黄豆中,蛋白质约有多少克)
(2)师:下面请同学们独立列出算式解决这个问题,要注意解释清楚为什么要这样列式。
学生独立思考,列式并汇报交流。
①你能试着用画图法来理解吗?学生试着画图。
通过画图我们知道,求蛋白质约有多少克,就是求250g的36%是多少。
②学生试着列式:250×36%。
③列式依据:“求一个数的几分之几是多少,用乘法计算”,这道题是求250的36%是多少,所以也要用乘法计算。(36%化成分数是,这道题也可以理解为“求250的是多少”,所以用乘法计算)
2、计算蛋白质含量,学习百分数化成小数、分数的方法。
(1)师:你们有办法解决吗?请同学们以250×36%为研究对象,4人一组展开交流,共同商量解决的办法,并将计算过程写在练习本上。
(2)学生交流并展示学习成果。
方法一:把百分数化成分数计算。
36%==250×36%=250×=90(g)
方法二:把百分数化成小数计算。
36%=0.36 250×36%=250×0.36=90(g)
(3)方法总结:将新知识与旧知识联系起来,将新知识转化成我们已经学过的数学知识来解答,这是我们解决数学问题的好方法。
六年级数学下册教案 篇二
课前准备
教师准备
PPT课件
教学过程
⊙谈话导入
同学们,在数学的学习中,我们有时会遇到很复杂的题,如何将这些题化难为易呢?这时候我们就要用到数学思想和方法。数学思想和方法可以帮助我们有条理地进行思考,简捷地解决问题。
⊙引发思考
在六年的数学学习中,你们知道了哪些数学思想和方法?能举例说一说吗?
⊙回顾与整理数学思想和方法
1、组织学生小组讨论学过的数学思想和方法,并巡视指导。
2、学生汇报,并借助PPT课件将学生的汇报进行整理、展示。
预设
常用的数学思想和方法:
(1)转化的思想方法:这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如立体图形的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(0除外)=甲×;除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化,通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。
(2)数形结合思想方法:数和形是数学研究的两个主要对象,数离不开形,形离不开数。一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。在解应用题时常常借助画线段图帮助分析题中的数量关系。
(3)对应思想方法:两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。
(4)代换思想方法:它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
(5)列表法:用表格的形式表示题中的已知条件和问题,使条件和条件之间,条件和问题之间的关系条理化、明朗化,有利于探求解题的思路,从而达到解决问题的目的。
……
⊙典型例题解析
例16个点可以连多少条线段?8个点呢?找找规律,根据规律,你知道12个点、20个点能连多少条线段吗?请写出算式。想一想,n个点能连多少条线段?
分析两点确定一条线段,即每两点之间都能连成一条线段。从2个点开始,逐渐增加点数连一连,亲自动手操作,并列成表格加以对照,从而找出规律。
点数
增加条数
2
3
4
5
总条数
1
3
6
10
15
通过观察发现:2个点可以连成1条线段,从2个点开始,以后每增加1个点,这个点和原有的每个点都能连成1条线段,所以原来有几个点,就会相应地增加几条线段。即:
2个点连成线段的'条数:1条
3个点连成线段的条数:1+2=3(条)
4个点连成线段的条数:1+2+3=6(条)
5个点连成线段的条数:1+2+3+4=10(条)
6个点连成线段的条数:1+2+3+4+5=15(条)
8个点连成线段的条数:1+2+3+4+5+6+7=28(条)
推出:n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)
根据规律可以推出12个点、20个点能连成的线段的条数。
解答6个点连成线段的条数:1+2+3+4+5=15(条)
8个点连成线段的条数:1+2+3+4+5+6+7=28(条)
12个点连成线段的条数:×12×(12-1)=66(条)
20个点连成线段的条数:×20×(20-1)=190(条)
n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)
六年级数学下册教案 篇三
教学目标
知识目标:使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
能力目标:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
情感目标:使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。
教学重难点
教学重点:灵活确定解决问题的思路,理解转化策略的价值,丰富学生的策略意识。
教学难点:初步掌握转化的方法和技巧。
教学准备
电子白板相关课件
教学过程
一、观察交流,明确转化的策略
出示图片,让学生比一比两个图形面积大小。
学生观察,讨论,猜测结果
指名汇报结果,并说出比较的方法
教师根据学生叙述,在电子白板上出示相应操作。
(剪切、平移、对于图2加xy原点,可以根据需要进行旋转,平移至相应位置)
将两个图形都转化成长方形,学生非常明显可以比较出两个图形的大小。
白板:同时出示两个图形的转化过程,要学生小结比较特殊图形大小的方法
引出课题:用转化的策略解决问题
师生小结:为什么要把原来的图形转化成长方形?(原来的复杂,转化后简单便于比较)
二、回顾转化实例,感受转化的价值
师引导:在以往的学习中,我们曾经运用转化的策略解决过哪些问题?
学生列举:平面图形的面积计算、分数小数计算等等。
白板出示以往学习过的平面图形,要求回答这些图形是转化成什么图形来计算面积的,根据学生回答,教师拖动原始图形,转变成新的图形。
白板出示异分母分数加减法,回顾异分母分数加减法都是先转化成同分母分数进行加减。
师:这些运用转化的策略解决问题的过程有什么共同点?
(把新问题转化成熟悉的或者已经解决过的问题。)
师小结:转化是一种常用的,也是重要的解决问题的策略。在我们以往的学习中,早就运用了这一策略分析并解决问题了。以后再遇到一个陌生的问题时,你会尝试用什么方法?
应用白板进行新课教学,可以根据学生实际灵活进行操作,学生在自主探索过程中通过自己的观察、讨论得到结论,教师在课前的'课件制作中也可以尽量减少工作量,提高工作效率。
三、分层练习,运用转化的策略
第一次:空间与图形的领域
1、练一练1
白板在方格纸上出示题目,让学生思考怎样计算图形的周长比较简单。
学生独立思考后,指名回答方法。师在白板上根据回答移动边,最后拼成规则图形。
明确:可以把这个图形转化成长方形计算周长
提问:如果每个小方格的边长是1厘米,这个图形的周长是多少厘米?你是怎样计算的,有没有简便方法?
学生计算后,再让学生说说解决这个问题的策略是什么?(把精确图形转化成简单图形)
2、练习十四第二题用分数表示图中的涂色部分
让学生各自看图填空,学生解决问题后,指名学生到讲台上说说是怎样想到转化的方法的,以及分别是怎么转化的。边说边用笔在白板上操作。
其中第3小题的图形要先旋转,再移动,让图形与方格纸重合。
3、练习十四第三题
先让学生独立解答,再让学生到白板前进行操作,其他学生进行点评,进一步指出转化策略在解题过程中的作用。
第二次数与代数的领域
1、教学试一试
出示算式,提问:这道题可以怎样计算?
2、指名学生回答后,出示正方形图,提出要求:你能说说图中哪一部分表示这几数的和吗?
3、引导看图想一想,可以把这一算式转化成怎样的算式计算?
对学有困难的学生可以提示:空白部分是大正方形的几分之几?能不能根据空白部分求出涂色部分?
4、师生小结:在解决问题的时候,我们要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法。
5、练习十四第一题
出示问题,指导学生理解题意。
白板出示分析图,帮助学生理解。
让学生数一数,一共要进行多少场比赛后才能产生冠军?明确数的时候可以根据图一层一层地数。
启发:如果不画图,有更简单的方法吗?
在白板上指图提示学生,产生冠军,一共要淘汰多少支球队?
进一步提出问题:如果有64支球队,产生冠军一共要比赛多少场?
四、师生总结:
今天我们学习了运用转化的策略解决问题,你对转化的策略又有了什么新的认识?
本课练习大部分内容通过学生自主练习,共同探索,达到教学目的。由于简单,可操作性强,学生可以到白板上进行实际演示,非常直观。
五、拓展练习,巩固转化的策略
1、立体图形中,我们有没有用到过转化策略解决问题?怎样求圆柱的体积?
2、你能不能求出灯泡的容积?
六年级数学下册教案 篇四
教学内容:
九年制义务教育小学数学第十二册P31~32页
教学目标:
1、通过学习和操作,认识圆柱的特征,能看懂圆柱的立体图,认识圆柱的高和圆柱侧面的展开图。
2、使学生形成圆柱的清晰表象,能根据圆柱的特征辨认圆柱体,认识圆柱的高,并能想象出圆柱侧面的展开图,培养学生的空间观念。
3、通过观察、操作、思考、讨论等活动,培养学生探索和解决问题的能力。
教学重点:
理解掌握圆柱的特征和侧面展开图
教学难点:
使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长与圆柱底面周长,宽与圆柱的高之间的关系。
教学准备:
教师:课件,圆柱模型,卡纸做的长方形(长30cm,宽20cm),正方形。
学生:每生自带一个侧面包装好的'圆柱形物体,剪刀。
教学过程:
一、创设情境,引入课题:
出示一个长方形小旗,快速旋转,让学生观察:看到了什么?(圆柱)
点出课题:圆柱的认识
对于圆柱一年级时我们已经有了初步认识,今天我们对它进行进一步的研究,相信将会对圆柱的认识更加深刻。
二、学习新知
1.认识圆柱的特征
(1)观察比较,建立表象
师:生活中的圆柱体很多,同学们都在那些地方见过圆柱?
课件展示老师搜集的圆柱图片,从实物中抽象出圆柱的立体图形。
(2)操作感知,归纳圆柱的特征
师:圆柱由那些面组成,这些面有什么特征?下面我们就利用准备好的圆柱通过看一看,摸一摸,滚一滚等方式对圆柱进行研究。重点解决以下问题:(课件显示)
圆柱由那些面组成?这些面有什么特征?
圆柱上下两个面大小相同吗?请你通过量一量,比一比等方式进行验证。
活动完成,汇报交流,教师及时板书,引导,得出圆柱的组成及特征。
2.认识圆柱的高
瞧,老师这还有两个圆柱呢。注意看,它们的底面相同,那它们的什么不同呢?那什么是圆柱的高呢?你认为圆柱的高指的是什么?谁能指一指?
课件讲解圆柱两个底面之间的距离叫做高。
让学生再指出几条高。体会高有无数条。并引导学生明白内部也有高。并用课件演示高一样长。课件出示:圆柱有无数条高,长度相等。
介绍生活中圆柱的高的不同叫法。
及时练习(课件展示)
这些问题孩子们轻而易举就解决了。看你们这么棒,老师手中的这个小圆柱也忍不住想请你们帮个忙了。它想知道自己身上的侧面包装纸有多大。该怎么办呢?
3.研究圆柱的侧面展开图
(1)思考:你想怎样剪呢?剪完展开后会是什么形状呢?想一想。
(2)小组合作探究:(课件出示探究要求)
(3)活动完成后小组汇报。(找两组同学上去边演示边讲解,师适时追问并板书)长方形的长就是圆柱的底面周长,宽就是圆柱的高。
(4)师进行演示操作,并把侧面展开图贴在黑板上。
(5)课件演示侧面展开整个过程,让学生把整个过程理解消化。
(6)思考:圆柱的侧面展开图有没有可能是正方形呢?什么情况下是正方形呢?(用正方形纸演示)
小结:圆柱的侧面如果沿高剪开,侧面展开就是一个长方形或正方形,如果斜着剪开就是平行四边形,如果沿折线或取下剪开得到的将会是不规则图形。
这节课不知不觉中我们既认识了圆柱的特征,又研究了圆柱的侧面展开。同学们的学习效果如何呢?下面我们就来对自己作一检测。
三、巩固练习
1、概念辨析
2、辨一辨(哪个是圆柱的展开图)
3、创造圆柱
结束语:同学们,其实在刚才旋转创造圆柱的过程中,隐藏着一个奇妙的数学现象呢。想知道吗?(点动成线,线动成面,面动成体课件显示)有趣吗?在神奇的数学世界里,像这种有趣的现象还有许多,就等着你们去探索,去发现呢!
教学反思:
圆柱是一种常见的立体图形,在实际生活中,圆柱形的物体很多,学生对于圆柱都有初步认识。因此,在导入环节,我引导学生从平面图形联想到立体图形,感受“面动成体”从而引入新课。本课的重点是认识圆柱的特征。教学时我引导学生自己动手操作探究,研究圆柱的基本特征。
在探究的过程中,我努力为学生创设动手实践的机会,给学生足够的时间进行操作和思考,让学生获得丰富的活动经验。活动分两个层次进行:活动一研究圆柱特征,让学生通过看一看、摸一摸、滚一滚等方式进行研究,探索出圆柱的主要特征;活动二探究侧面展开图。通过这样的活动体验,让学生经历学习数学的过程,使学生在动手操作中充分感悟,形成表象,观察、比较、探索规律。
本节课属于空间与图形教学,它的另一个重要功能是培养学生的空间想象能力。因此我通过多个环节来发展学生的空间想象能力:
1、从长方形旋转得到圆柱引入新课。
2、在进行侧面展开之前,让学生先去想象展开后的形状,再去动手操作。
3、巩固练习创造圆柱中鼓励学生大胆去想象、创造圆柱。以此来培养学生的空间想象力,发展空间观念。
六年级数学下册教案 篇五
教学目标
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 1 2 3 4 5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
4、引导学生发现:
圆柱体的。体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)教学例1
1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
板书:
答:这个零件的体积是76立方厘米.
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积.
(2)已知圆锥的底面直径和高,求体积.
(3)已知圆锥的底面周长和高,求体积.
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正。