1. 主页 > 知识大全 >

高中数学基本不等式教案设计(优秀8篇)8-1-26

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。为了帮助大家更好的写作高中数学,高考家长帮整理分享了8篇高中数学基本不等式教案设计。

高中数学基本不等式教案设计 篇一

课标要求

知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

过程与方法:通过实例探究抽象基本不等式;

情感目标:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣; 识记 理解 应用 综合 知识点一:

基本不等式及其推导

过程 ∨ 知识点二:

基本不等式的应用 ∨ 目标设计 1.通过从不同角度探索不等式 的证明过程,使学生理解基本不等式及其等号成立的条件;

2.掌握基本不等式解决最值问题,并理解运用基本不等式 的三个限制条件(一正二定三相等)在解决最值中的作用。 教学情境一:

如图是在北京召开的第24界国际数学家大会的会标,

会标是根据中国古代数学家赵爽的弦图设计的,

颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

问题1:你能在这个图案中找出一些相等关系或不等关系吗?

分析:将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。

教师引导学生从面积的关系去找相等关系或不等关系。

我们考虑4个直角三角形的面积的和是 ,正方形的面积为 。

由图可知 ,即 .

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

新知:若 ,则

教学情境二:

先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,

再用这两个三角形拼接构造出一个矩形

(两边分别等于两个直角三角形的直角边,多余部分折叠).

假设两个正方形的面积分别为 和 ( )

问题2:考察左图中两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?

新知:若 ,则

问题3:你能用代数的方法给出它们的证明吗?

证明:因为 ,即 (当 时取等号)

(在该过程中,可发现 的取值可以是全体实数)

证明:(分析法):由于 ,于是要证明 ,

只要证明 ,

即证 ,即 ,

所以 ,(当 时取等号)

【板书】两个重要不等式

若 ,则 (当且仅当 时,等号成立)

若 ,则 (当且仅当 时,等号成立)

高中数学教案 篇二

学习目标:

1、了解本章的学习的内容以及学习思想方法

2、能叙述随机变量的定义

3、能说出随机变量与函数的关系,

4、能够把一个随机试验结果用随机变量表示

重点:能够把一个随机试验结果用随机变量表示

难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

环节一:随机变量的定义

1.通过生活中的一些随机现象,能够概括出随机变量的定义

2能叙述随机变量的定义

3能说出随机变量与函数的区别与联系

一、阅读课本33页问题提出和分析理解,回答下列问题?

1、了解一个随机现象的规律具体指的是什么?

2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

总结:

3、随机变量

(1)定义:

这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的

到的映射。

(2)表示:随机变量常用大写字母。等表示。

(3)随机变量与函数的区别与联系

函数随机变量

自变量

因变量

因变量的范围

相同点都是映射都是映射

环节二随机变量的应用

1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件

例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案。这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果

例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变

量,分别说明下列集合所代表的随机事件:

(1){X=0}(2){X=1}

(3){X<2}(4){x>0}

变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果。

练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;

(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;

小结(对标)

高中数学基本不等式教案设计 篇三

一、教材分析

1、本节教材的地位和作用

“基本不等式” 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、 教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。?

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解。

2、运用分析法证明基本不等式

如果 a>0,b>0 ,

用 和 分别代替a,b。可以得到

也可写成

(强调基本不等式成立的前提条件“正”)(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证 = 1 GB3 ①

只要证 = 2 GB3 ②

要证② ,只要证 = 3 GB3 ③

要证 = 3 GB3 ③ ,只要证 = 4 GB3 ④

显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。

(强调基本不等式取等的条件“等”)

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为

问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

高中数学教案 篇四

三维目标:

1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

2、过程与方法:

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

教学方法:

讲练结合法

教学用具:

多媒体

课时安排:

1课时

教学过程:

一、问题情境

假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

二、探究新知

1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

下列抽样的方式是否属于简单随机抽样?为什么?

(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

3、常用的简单随机抽样方法有:

(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。

(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;

继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

三、课堂练习

四、课堂小结

1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

2、简单随机抽样的方法:抽签法随机数表法

五、课后作业

P57练习1、2

六、板书设计

1、统计的有关概念

2、简单随机抽样的概念

3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

4、课堂练习

高中数学教案 篇五

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

教学活动

设计意图一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2(www.kaoyantv.com))对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4、函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1、(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1 (2)y=x 1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x与y互换得。

3° 写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=—2x 3(xR) (2)y=—(xR,且x)

( 3 ) y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题24 第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学基本不等式教案设计 篇六

教材分析

本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。 通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析

依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析

重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式 的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

教学准备

多媒体课件、板书

教学过程

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

创设情景,提出问题;

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

二、抽象归纳:

一般地,对于任意实数a,b,有 ,当且仅当a=b时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当a>0,b>0时,在不等式 中,以 、 分别代替a、b,得到什么?

设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。

答案: 。

【归纳总结】

如果a,b都是正数,那么 ,当且仅当a=b时,等号成立。

我们称此不等式为基本不等式。 其中 称为a,b的算术平均数, 称为a,b的几何平均数。

三、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式

已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:

若 ,则有 ,当且仅当a=b时, 。

[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

“当且仅当a=b时,等号成立”的含义是:

高中数学教案 篇七

教学目标

(1)了解算法的含义,体会算法思想。

(2)会用自然语言和数学语言描述简单具体问题的算法;

(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

教学重难点

重点:算法的含义、解二元一次方程组的算法设计。

难点:把自然语言转化为算法语言。

情境导入

电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

第一步:观察、等待目标出现(用望远镜或瞄准镜);

第二步:瞄准目标;

第三步:计算(或估测)风速、距离、空气湿度、空气密度;

第四步:根据第三步的结果修正弹着点;

第五步:开枪;

第六步:迅速转移(或隐蔽)

以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

课堂探究

预习提升

1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

2、描述方式

自然语言、数学语言、形式语言(算法语言)、框图。

3、算法的要求

(1)写出的算法,必须能解决一类问题,且能重复使用;

(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

4、算法的特征

(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

(5)不唯一性:解决同一问题的算法可以是不唯一的

课堂典例讲练

命题方向1对算法意义的理解

例1、下列叙述中,

①植树需要运苗、挖坑、栽苗、浇水这些步骤;

②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

④3x>x+1;

⑤求所有能被3整除的正数,即3,6,9,12。

能称为算法的个数为(  )

A、2

B、3

C、4

D、5

【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

【答案】B

[规律总结]

1、正确理解算法的概念及其特点是解决问题的关键、

2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

【变式训练】下列对算法的理解不正确的是________

①一个算法应包含有限的步骤,而不能是无限的

②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

③算法中的每一步都应当有效地执行,并得到确定的结果

④一个问题只能设计出一个算法

【解析】由算法的有限性指包含的步骤是有限的故①正确;

由算法的明确性是指每一步都是确定的故②正确;

由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

由对于同一个问题可以有不同的算法故④不正确。

【答案】④

命题方向2解方程(组)的算法

例2、给出求解方程组的一个算法。

[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

[规范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程组可化为

第二步,解方程③,可得y=-1,④

第三步,将④代入①,可得2x-1=7,x=4

第四步,输出4,-1

方法二:算法如下:

第一步,由①式可以得到y=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,输出4,-1

[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。

2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

【变式训练】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命题方向3筛选问题的算法设计

例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

[思路分析]比较a,b比较m与c―→最小数

[规范解答]算法步骤如下:

1、比较a与b的大小,若a

2、比较m与c的大小,若m

[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

【变式训练】在下列数字序列中,写出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一个数m,m=21;

2、将m与89比较,是否相等,如果相等,则搜索到89;

3、如果m与89不相等,则往下执行;

4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

命题方向4非数值性问题的算法

例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

(1)设计安全渡河的算法;

(2)思考每一步算法所遵循的共同原则是什么?

高中数学教案 篇八

一、教学目标:

1、知识与技能目标

①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标

通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

3、情感、态度与价值观目标

通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

二、教学重点、难点

重点:理解循环结构,能识别和画出简单的循环结构框图,

难点:循环结构中循环条件和循环体的确定。

三、教法、学法

本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

四、 教学过程:

(一)创设情境,温故求新

引例:写出求 的值的一个算法,并用框图表示你的算法。

此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

(二)讲授新课

1、循序渐进,理解知识

【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

(1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

引例“求 的值”这个问题的自然求和过程可以表示为:

用递推公式表示为:

直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

(2)“ ”的含义

利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。

③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

(3)初始化变量,设置循环终止条件

由 的初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

【2】循环结构的概念

根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

2、类比探究,掌握知识

例1:改造引例的程序框图表示①求 的值

②求 的值

③求 的值

④求 的值

此例可由学生独立思考、回答,师生共同点评完成。

通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

书到用时方恨少,事非经过不知难。高考家长帮为大家整理的8篇高中数学基本不等式教案设计到这里就结束了,希望可以帮助您更好的写作高中数学。