新课标小学五年级下册数学《质数和合数》教案 篇一
教学目标:
(1)经历“求因数—找规律—探究归纳—应用”等数学活动,发现并掌握质数和合数的特征,并能运用其特征判别质数和合数。
(2)在参与探索的过程中,发展观察、比较、分析、概括、推理能力,初步体会分类归纳的数学方法和数学思想。
(3)体验数学“再创造”的乐趣,发展数学意识和数学品质。
教学重点:掌握质数和合数的特征。
教学难点:准确判断一个数是质数还是合数。
教学关键:发现质数和合数的因数特点。
教学准备:课件、展台、学生练习卡。
预习提示:
(一)回顾旧知
1.非0的自然数按是不是2的倍数作为标准进行分类,可以分为( )数和( )数。
2. 能被2、5、3整除的数有什么特征?我们是怎样研究2、3、5的倍数特征的?
(二)尝试探究
1.根据前面研究数的经验,选择一组数进行研究(如:1——20各数;20——25各数; 100——200各数;200——400各数)。
2.写出这组数中各数的因数,并根据它们所含因数个数的情况进行分类。
3.仔细阅读教材第23页,填写书中表格。想一想:根据因数个数的情况,这几类数分别叫什么数?
(三)在研究的过程中你还有什么困惑?
教学过程:
一、复习旧知,为“再创造”作好铺垫。
师: 通过检查同学们的预习作业,我发现大家对因数、倍数等旧知识掌握得非常牢固。现在,我们针对“回顾旧知”部分进行一下交流:按是不是2的倍数作为标准进行分类,非0的自然数可以分为哪几类?
生:可以分为两类:奇数和偶数。
师:我们是怎样研究2、3、5的倍数特征的?
生1:我们学习2的倍数的特征时,是先写出几个数,然后再来研究它们个位上数的特点,然后发现规律。
生2:我们学习5的倍数的特征时,是先找出5的倍数,然后再来研究它们的共同特点。
生3:我们研究2、3、5的倍数特征时,都是先写出一些数,然后再来研究它们的特点。
师:对,通过对一些具体的数的研究,发现它们的一些共同特征,这是我们最近研究数的问题时经常用的方法,通过预习,你们知道今天这节课,我们要学习的两个新的概念是什么吗?
生(齐):质数和合数。
(板书课题:质数与合数)
师:通过检查同学们的预习作业,我发现大部分同学选择了1——20这组数进行研究,能说说你们的想法吗?
生1:我开始用的是20-25这几个数,可是数太少了,发现不了规律,后来我又加上了1——19这些数。
生2:如果选择的数太多,比如找100——200的每个数的因数,研究起来太麻烦了。
生3:选择的数太大,研究起来也比较麻烦。
生4:我看书上让我们找1——20各数的因数,我就用这组数了。
师:同学们的想法是对的,我们在研究数的时候,一般都要先从较小的一段数入手研究。
[评析:精简的复习,初步渗透分类归纳的数学思想方法,教师有意识地进行学法指导,引导学生主动迁移学习经验,为下面的学习作好了铺垫。]
二、合作探究,经历“再创造”的过程。
师:通过课前预习,你解决了哪些问题?
生1:我知道了什么叫质数?什么叫合数?
生2:我知道一个数究竟是质数还是合数,与它所含因数的个数有关。
……
师:同学们运用前面学过的方法,通过课前预习已经解决了这么多与质数、合数相关的问题,真了不起!那么在研究的过程中,你有什么困惑吗?
生1:我想知道怎样才能快速判断出一个数是质数还是合数?
生2:这两种数与我们前面学的知识有什么关系?
生3:为什么说1既不是质数也不是合数?
生4:0是什么数?
生5:有没有最大的质数?
……
师:同学们真善于思考,提出了这么多有价值的研究问题。那么,这节课我们就在大家独立预习的基础上,发挥小组的力量,共同合作探究关于质数与合数的问题,好吗?
课件出示小组合作学习提示:
(1)结合“预习提示”的尝试探究过程,说一说什么样的数叫做质数?什么样的数叫做合数吗?
(2)举例说明,怎样判断一个数是质数还是合数?
(3)通过本节课的学习,你们觉得自然数还可以怎样分类?
师:请小组长组织本组成员有效交流,看看你们能否达成共识,并进行合理分工,一会儿展示你们的学习成果。
学生进行小组合作学习,教师巡视了解,融入其中。
[评析:从学生预习过程中的收获和问题出发,顺应学生的需要,通过小组合作要求的引领,有效的引导学生进行小组合作学习中,相互帮助,实现学习互补,从而使每一个学生得到不同程度的发展。]
三、展示交流,体验“再创造”的快乐。
师:各小组在小组长的带领下都完成了学习任务,接下来我们要展示一下大家的学习成果。一直以来大家的汇报交流都很好,很有成效,希望同学们今天也不要紧张,积极交流。在交流时要认真倾听别人的发言,如果有不同的见解、不懂的问题、或者想要给他人补充,都可以主动提出来。
(第五小组先来汇报第(1)项学习内容)
生1(边用展台展示1—20各数的因数及23页分类表格边汇报):我们写出了1—20各数的因数,把2、3、5、7、11、13、17、19这些数分为一类,它们只有两个因数,这样的数叫做质数;把4、6、8、9、10、12、14、15、16、18、20这些数分为一类,因为它们有两个以上因数,这样的数叫做合数;1自己一类,它既不是质数也不是合数。一个数,如果只有1和本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和本身还有别的因数,这样的数叫做合数。
生2板书:一个数,如果只有1和本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和本身还有别的因数,这样的数叫做合数。
生3:你能具体的说说为什么2、3、5……是质数,为什么4、6、8……是合数吗?
生1:2的因数只有1和2,3的因数只有1和3,,5的因数只有1和它本身5,7的因数只有1和它本身7,这些数都只有1和它本身,所以它们就是质数。4的因数除了1和它本身还有别的因数,6除了1和它本身还有别的因数,所以它们是合数。
生5:我来补充,4的因数除了1和它本身4,还有因数2,6的因数除了1和它本身6,还有因数2和3,8的因数除了1和它本身8,还有因数2和4,所以它们都是合数。
生6:为什么说1既不是质数也不是合数?
生1:质数是只有1和它本身两个因数的数,合数是除了1和本身还有别的因数的数,而1只有一个因数,所以1既不是质数也不是合数。
生2:我来补充,因为1只有它本身1这一个因数,而质数有两个因数,合数有两个以上因数,所以1既不是质数也不是合数。
生7:1只有一个因数1,它既不符合质数定义也不符合合数定义。所以它既不是质数也不是合数。
(第三小组来汇报第(2)项学习内容。)
生1:我们可以根据质数和合数的概念来判断一个数是质数还是合数,比如11只有1和它本身这两个因数,它就是质数。再比如15的因数有1、15、3、5,它除了1和15还有别的因数,它就是合数。
生2:我认为这样判断更简便,如果一个数只有两个因数就是质数,如果有三个或者三个以上因数,它就是合数。
生3:一个数,除了1和它本身以外,只要能再找出它的一个因数,这个数就是合数。比如12除了1和它本身这两个因数,它还是2的倍数,所以12是合数。
师:通过刚才的研究,我们发现:判断一个数是质数还是合数,关键是看什么?
生:除了 1和它本身是否还具有其他因数。
师:一个数,如果只有1和它本身这两个因数,它就是——-。
生(齐):质数。
师:一个数,如果除了1和它本身外还含有其他的因数,它就是——。
生(齐):合数。
师:你能再说出几个质数吗?
生1:23是质数,因为13只有1和它本身这两个因数。
生2:29也是质数,因为17只有1和它本身这两个因数。
生3:31是质数。
……
质数和合数 篇二
一、教学目标
1、使学生理解质数和合数的意义,能正确判断一个数是质数还是合数。
2、知道100以内的质数,熟记20以内的质数。
3、在学习活动中培养学生自主探索、独立思考的能力。
二、教学重难点理解质数和合数的意义,会正确判断。
三、教学过程
1、复习导入
74 900 105 228 判断这些数分别是几的倍数。
自然数按照是否是2的倍数可以分成哪两类?最小偶数是几?
2、自主探究,理解含义
⑴今天,我们来学习自然数的另一种分类方法,按因数的个数分。请同学们拿出已经做好的1~20的因数,根据因数个数完成表格。
⑵交流分法,理解质数和合数的意义。
一个数,如果只有1和它本身两个因数,这样的数叫质数,也叫素数。
一个数,如果出了1和它本身,还有别的因数,这样的数叫合数。
因为1只有一个因数,所以1既不是质数也不是合数。
⑶20以内的质数和合数有哪些,读一读。
⑷判断这些数是质数还是合数。说明理由。
8 35 84 11 111 9000
小结:除了1和它本身以外,它还是其他数的倍数,这个数就是合数。
⑸练习 课堂第8页填空
学生独立完成,交流校对。
3、找出100以内的质数,并整理。
我们已经认识了质数和合数两个新朋友,现在请同学们快速地找出表格中100以内的质数。
⑴先思考交流,有什么好办法可以帮我们又快又准确地找出质数,一个也不漏下。
⑵独立完成,把找到的质数读一遍。
⑶整理100以内大的质数,看看哪个同学的整理方法又清楚又方便记忆。
展示、评价 11 31 41 61 71
2
3 13 23 43 53 73 83
5
7 17 37 47 67 97
19 29 59 79 89
⑷观察100以内质数表,你有什么发现?
除了2,其他质数都是奇数。 质数的个位一般不会是0、2、4、6、8除了2和5这两个数。
⑸练习 书本25页判断题
交流,说明理由
4、拓展小游戏《猜猜我是谁》
我既不是质数也不是合数。( )
我的因数只有1和3。( )
我是20以内最大的质数。( )
我比10小,既是合数又是奇数。(&nbs【WWW.JIAOXUELA.COM】p; )
把我两个数位上的数字交换位置,仍是质数。( )
我们是质数,把我们相加和是20,把我们相乘积是91,。( )( )
5、总结 揭题
经过这节课的学习,你知道按因数的个数怎样给自然数分类了吗?
这样分类,包括所有的自然数了吗?0怎么办?为什么?
如果要给今天的学习内容起个名字,你会起什么呢?
教学反思
早上第一节在三班试教,感觉很差。
问题一:问题的针对性不够明确,导致浪费了很多时间。
试教时出现的状况:分类时,让学生按自己的方式,结果出现五花八门的分法,再分析引导花了七八分钟时间。
处理办法:分类时,出现表格,让学生根据表格要求进行分类。
问题二:知识点的小结和提炼不够及时,导致学生在练习中的错误很多。
试教时出现的状况:通过探究得出质数和合数的意义后,马上进行填空练习,这时候学生对意义还没有进过咀嚼消化,因此练习中错误很多。
处理办法:通过探究得出质数和合数的意义后,加入一个简单练习,判断这些数是质数还是合数,通过判断巩固意义,熟练判断方法。再做综合性的填空练习,效果会更好。
经过调整,总算在下午开课时还算顺利地把课上下来了。
质数和合数 篇三
教学目标
1、引导学生自主探索、掌握质数和合数的意义,并能正确辨析。
2、能熟记20以内的质数。用筛选法编制100以内的质数表,掌握初步分类的数学方法。
3、使学生独立思考能力和合作精神得到和谐发展。
教学重点
1.理解掌握质数、合数的概念及其特征。
2.初步学会准确判断一个数是质数还是合数。
教学难点
区分奇数、质数、偶数、合数。
教学准备:
1、学生有关质数合数的学具:1-12的约数的纸片(学生已经提前写好),教师准备也准备相同卡片。
2、1-100的数表 (学生已经用不同颜色的笔依次划去了2、3、5、7的倍数,2、3、5、7本身留下。)
3、课件或小黑板写好了判断题,填空题。
教学过程:
一、 复习
1、什么叫约数和倍数?
2、找出13、14的约数。
14的约数中包含2,那14就是2的倍数,它能被2整除,这样的数又称为什么数?
引入复习偶数和奇数的意义。(板书)偶数和奇数是把自然数按什么标准来分类的呢?(板书)
你能说出1-12中的奇数和偶数各有哪些吗?(生答后,师板书)
自然数中不是奇数就是偶数,奇数加奇数等于什么数?(偶数)8等于哪两个奇数之和呢?(板书8=3+5)
这道简单的算式却符合世界著名的歌德巴赫猜想,200多年前德国的一位数学教师歌德巴赫在教学中发现“任何不小于6的偶数都是两个奇质数之和” 。这个猜想目前因没人能全面证明而被称为“数学皇冠上的明珠”。你对这个猜想有什么不明白的地方?
生:什么叫奇质数?师:奇质数是指又是奇数又是质数的数。
生:那什么叫质数呢?师:那这节课我们就来认识质数这个新名词和它的伙伴“合数”。
二、 新授
首先请同学们拿出写好了1-12的约数情况的学具纸片,
例1.写出下面各数的所有约数:
1的约数: 2的约数: 3的约数: 4的约数:
5的约数: 6的约数: 7的约数: 8的约数:
9的约数: 10的约数: 11的约数; 12的约数:
二、探究新知
(一)引导学生归纳。
1.按这些约数个数的多少,可以分为哪几种情况?
2.分组讨论后汇报。
3.引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的,有四个约数的,有六个约数的。
教师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)
(二)按约数个数的多少,把自然数分成三种情况。
1.分组再讨论。
2.汇报讨论结果。
3.引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别是:
板书:2的约数:1、2
3的约数:1、3
5的约数:1、5
7的约数:1、7
11的约数:1、11
有两个以上的约数,它们分别是:
板书:4的约数:1、2、4
6的约数:1、2、3、6
8的约数:1、2、4、8
9的约数:1、3、9
10的约数:1、2、5、10
12的约数:1、2、3、4、6、12
(三)观察比较发现特点:
1.观察2、3、5、7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)
2.观察4、6、8、9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的约数)
3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习的新知识,质数和合数。(板书课题:质数和合数)
(四)质数、合数的定义。
1.一个数,如果只有1和它本身两个约数,这样的数叫做质数。(或素数)(板书)
2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。(板书)
3.教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点。
1既不是质数,也不是合数。(板书)
(五)按约数个数的多少给自然数分类。
1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?
三类:质数、合数和1
2.教师提问:判断一个数是质数还是合数,关键是找什么?
关键:找约数的个数。
(六)教学例2.
1.判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
(学生独立练习,集体订正)
教师强调:熟练运用找约数的方法,这种做题法是做对题的关键。
2.反馈练习: 下面哪些数是质数,哪些数是合数?
19 21 43 67
(七)介绍100以内的质数表。
1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
2.用质数表检查例2
检查方法;表中有17、29、37,说明是质数;
22、35、87表中没有,又不是1,说明是合数。
3.教师提示:要熟记20以内的质数
三、全课小结
同学们,这节课你学到了什么知识?
四、课堂练习
1.下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7、本身不画掉),剩下的数都是什么数?最早使用上述方法来寻求质数的人,是古代希腊数学家埃拉托斯特尼
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
教师提示:古希腊的数学家就是用这种方式找质数的,有兴趣的同学可以用这种方法找100以内的质数。
2.检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里,再用质数表检查。
质数和合数 篇四
【教学内容】小学数学人教版五年级下册第二单元《质数和合数》第23页。
【教学目标】
1.使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2.培养学生观察、比较、归纳、概括的能力。
3.培养学生勇于实践、探索的学习品质。
【教学重点】
质数和合数的概念。
【教学难点】
正确判断一个数是质数还是合数。
【教学准备】
1.教具准备:边长1厘米的小正方形若干、小组合作表格。
2.学具准备: 小字本。
【教学过程】
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生动手在小字本上画一画。
生1:能拼成2个,横着和竖着。
生2:不对,横着和竖着是一样的。
师:你拼出的长方形长是几?宽边呢?
生3:长是3,宽是1。拼成3×1的形状。
根据学生回答教师填写表格。
正方形个数
拼出长方形的个数
长×宽
3
1
3×1
【学生积极动手,虽不知道今天学习什么内容,心中充满了疑惑,但是兴趣都很浓。说明学生是非常喜欢探究的。突破三个同样的小正方形无论这么放都只是一种。】
2、师:这样的四个小正方形能拼出几个不同的长方形?
学生动手画一画。学生各自独立思考后举手回答。并填写表格。
【突破正方形是特殊的长方形,有两种拼法。】
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)并填写表格。
师:看表格,第三列与第一列有什么关系?
生:3和1是3的因数。……
师:第三列改为正方形个数的因数。
4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)
生:刚才四个正方形能排出两个,如果用5个正方形只能排出1个。
师:一个例子就把你们刚才的结论给否定了。多有说服力的反例!
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种,你觉得当小正方形的个数是什么的时候,只能拼一种?(学生思考着,之后,相互之间展开了热烈的讨论。)
学生举例:3,5,11,13,17……
师:这些数有什么共同的特征?
师:我们发现表示正方形个数的数只有1和它本身两个因数的时候,只能拼成一个长方形,什么情况下拼得的长方形不止一种?
学生举例:4、6、8、9、10、12、14、15……
师:说得完吗?(生:说不完。)
师:那么,应该怎样回答这个问题呢?这些数有什么共同的特征?
生1:它们除了1和它本身两个因数外,还有别的因数。
生2:我发现个位上是0、2、5的数,除了2、5,拼得的长方形不止一种。因为它们除了1和它本身外,最少还有因数2或5。
新课标小学五年级下册数学《质数和合数》教案 篇五
教学内容:课本23页——24页例1及课本25页练习四
教学目的:使学生理解质数和合数的意义;掌握判断一个数是质数还是合数的方法。
教学重点、难点。理解质数和合数的意义既是本节的重点也是难点。
教具准备:有关卡片
教学过程:
一、复习
1、什么叫因数?
2、自然数分几类?
3、前面我们学习了因数和倍数,现在我们利用所学知识,做下面几道:
①在下面的长方框里填上适当的数。
10的因数 12的因数
( ) ( )
②说出下面哪些有因数2、哪些有因数3、哪些有因数5?
20 60 42 98 78 120 45
二、新授。
板书课题:质数和合数
1、学习质数和合数的意义
写出下面每个数的所有因数:
1的因数 5的因数 9的因数
2的因数 6的因数 10的因数
3的因数 7的因数 11的因数
4的因数 8的因数 12的因数
13的因数———— 14的因数———— 15的因数————
16的因数———— 17的因数———— 18的因数————
19的因数———— 20的因数————
引导学生按照每个数约数个数的多少,可分为几种情况?
学生归纳:这些数中只有1个因数的有
只有两个因数的有
有两以上个因数的有
小结:1只有一个因数,这是个特殊的数,把其它的分成两类:只有两个因数的和有两个以上因数的。现在给这两类数一个名称。
如果只有1和本身两个因数,这样的数叫做质数(或素数)。
一个数如果除了1和本身还有别的因数,这样的数叫合数。
对照质数和合数的定义,看“1”这个特殊的数是质数还是合数得出:
1既不是质数也不是合数。
2、判断质数的方法。
(1)通过对质数和合数认识,我们来对下面各数作一下判断。
判断下面各数,哪些是质数?哪些是合数?
17 22 29 35 37 87 93 96
是质数, 是合数。
a、小组讨论、说出判断的根据。
b、代表汇报、讨论结果。
(2)做一做。
古希腊数学家是用这种方法找质数的,你们想试一试吗?
【出示卡片】:
下面是2到50的数,先画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7本身不画掉),剩下的数都是什么数?
2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、37、38、39、40、41、42、43、44、45、46、47、48、49、50。
你用这种方法是否会找出100以内的质数、1000以内呢?
3、偶数、奇数、质数、合数的关系。
刚才我们把2—50以内的质数找了出来,现在这里有100以内的质数表,请你仔细观察,你从中发现了什么?
出示卡片:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
①小组讨论。
②小组代表汇报。
③教师小结:按自然数中是2的倍数,把数分为偶数、奇数两类,按因数的个数多少分为1、质数、合数。两种分法标准不一样,判断时根据各自定义进行。
三、巩固练习:
1、判断:
(1)一个数不是质数就是合数。( )
(2)所有的偶数都是合数。( )
(3)两个不同的质数和一定是偶数。( )
2、填空:
(1)6的约数有 个,它是 。
(2)最小的质数是 ;最小的合数是 。
3、选择:
(1)两质数相乘,积一定是( )。
①质数 ②合数 ③偶数 ④奇数
(2)一个合数的因数有( )
①1个 ②2个 ③三个或三个以上
小结:本节课我们首先学习了质数和合数的意义,又学习了一个数是质数还是合数的判断方法,接着学习了偶数、奇数、质数、合数它们之间的区别与联系。现在打开课本整理一下本节学习内容。
四、布置作业:
1、完成课本第25页练习四的第1——2题
2、讨论课本第25面第3题,第26面第4——5题
只要功夫深,铁杵磨成针。以上就是快回答给大家分享的5篇新课标小学五年级下册数学《质数和合数》教案,希望能够让您对于质数和合数的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。