1. 主页 > 知识大全 >

七年级下册数学教案精选10篇7-10-79

作为一名教学工作者,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。快来参考教案是怎么写的吧!下面的10篇七年级下册数学教案是由高考家长帮精心整理的七年级下册数学教案范文模板,欢迎阅读参考。

七年级数学下册教案 篇一

第一节 轴对称现象

一、教学目的

1、知识与技能目标

使学生感知现实世界中普遍存在的轴对称现象,通过观察、操作等活动,自主探求轴对称图形的特征,理解对称轴的含义,感受数学的美。

2、过程与方法

经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。

3、情感态度与价值观

让学生在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学习数学的兴趣。

4、教学重点、难点

重点:认识“轴对称图形”和“两个图形成轴对称”的概念,会找出简单轴对称图形的对称轴。难点:了解“轴对称图形”和“两个图形成轴对称”的区别和联系。

二、教学过程

(一)创设情景,引入新课

投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)

同学们,在上课之前,我们先来欣赏一组图片:风景秀丽的漓江山水,美轮美奂的建筑艺术,生动形象的京剧脸谱,惟妙惟肖的民间剪纸,方便快捷的交通工具。这些图片美吗?那么老师告诉你们一个秘密,这些图片之所以这么美,是因为他们具有一个共同特征-轴对称现象。

分析各类图案的特点,让学生经历观察和分析,感受到轴对称的美和特征,初步认识轴对称图形。PPT出示学习目标(全班齐读),让学生明确学习目标。

(二)自学检测

1.(1)如果把 个平面图形沿着 对折后,直线两旁的部分能够互相 ,那么这个图形叫做轴对称图形,这条直线叫做 。

(2)老师这里有一些图片,哪位同学能够结合这些图形再加深一下我们对概念的理解呢?

2.(1)如果 个平面图形沿 折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的 。

(2)同样,哪位同学能够结合这些图形再加深一下我们对两个图形成轴对称的理解呢?

3.试举例说明现实生活中也具有轴对称特征的物体,并找出它的对称轴。发展学生想象能力,让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。

(三)互动释疑

1.请大家仔细观察!说说两组图片的不同之处和相同之处。

第一组 第二组

请探究 “轴对称图形”和“两个图形成轴对称”的区别和联系。

轴对称图形 两个图形成轴对称

区别 个图形 个图形

联系 1.沿一条直线折叠,直线两旁的部分能够 。2.都有 。3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线 ;如果把两个成轴对称的图形看成一个图形,那么这个图形就是 。

弄清楚轴对称图形与两个图形成轴对称的区别,两个图形成轴对称是指两个图形之间的形状和位置关系,而轴对称图形是对一个图形而言,轴对称图形是一个具有特殊形状的图形。它们都有沿某条直线对折使直线两旁的图形完全重合的特征。

2、请找出下面轴对称图形的对称轴。

等腰三角形 长方形 等边三角形 正方形 五角星 圆

归纳:①轴对称图形的对称轴可能不止一条。

②一个图形有多条对称轴时,它们相交于一点。

3.如图有四个大小相等的正方形组成“L”型图案。

(1)请你再添加一个正方形,使它变成轴对称图形,并画出对称轴;

(2)请你改变一个正方形的位置,使它变成轴对称图形,并画出对称轴。

实际教学效果:通过与其他小组同学进行讨论学习,各小组都对轴对称图形有深刻认识和理解。

(四)巩固提升

活动内容:进行适当的由浅入深,由感性到理性的一些练习,老师进行了一些必要的讲解,打好学生的知识技能的基础。

1、下列哪些是属于轴对称图形?并画出轴对称图形的对称轴。

2、下列四组图片中有哪几组图形成轴对称?

3、0-9十个数字中,哪些是轴对称图形?

4、下面的字母中,哪些是轴对称图形?

5、中国的汉字也十分注重对称美。猜一猜,这是什么字的一半?

6、如图:在3×3的正方形网格中,已有两个小正方形被涂上颜色.若再将图中其余小正方形任意涂一个,使整个图案构成一个轴对称图形的方法共有( )种,请在下图中画出来。比一比,谁的速度快!

7、下图是由一张纸对折后(两部分完全重合)得到的,展开折纸,你能得到什么样的图形?先想一想,再拼一拼。

(五)课堂小结

今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。

(六)布置作业

(1)必做题:习题5.1第1、3题

(2)选做题:动脑筋想一想,再亲手做一做,一张正方形纸片,如何只剪一刀,就得到一个十字形?

三、教学反思

1.以教材为本,但又不拘泥于教材,把握教材但又不被教材所束缚。

2.给学生充分的展示自己才华的机会。

3.注意改进方面:如给学生分组,把握教材的难度和重点,加强对学生的调控,备课要细致等,以利于后面的教学。

板书设计

5.1 轴对称现象

一、轴对称图形

二、两个图形成轴对称

三、轴对称图形和两个图形成轴对称的区别与联系

七年级下册数学教案 篇二

〖教学目标〗

1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。

2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

3、会用多项式的乘法解决简单的实际问题。

〖教学重点与难点〗

教学重点:多项式与多项式相乘的运算。

教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

〖教学过程〗

一、创设情境,引出课题

小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?

二、引出新知,探究示例

1、合作探索学习:有一家厨房的平面布局如图1

(1)请用三种不同的方法表示厨房的总面积。

(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?

(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?

(让学生以同桌合作的形式进行探索,然后表达交流)

答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

=ab+am+nb+nm……②

第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:

(学生归纳,教师板书)

2、运用新知,计算例题

例1:计算

(1)(_+y)(a+2b)(2)(3_—1)(_+3)(3)(_—1)2

解:(1)(_+y)(a+2b)=_?a+_?(2b)+y?a+y?(2b)=a_+2b_+ay+2by

(2)(3_—1)(_+3)=3_2+9_—_—3=3_2+8_—3

(3)(_—1)2=(_—1)(_—1)=_2—_—_+1=_2—2_+1

教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

反馈练习:课内练习1

例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

当a=时,原式=17a—3=17×()—3=—19—3=—22

注意的几点:(1)必须先化简,再求值,注意符号及解题格式。

(2)当代入的是一个负数时,添上括号。

(3)在运算过程中,把带分数化为假分数来计算。

反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。

2、课内练习2、3。

三、分层训练,能力升级

1、填空

(1)(2_—1)(_—1)=

(2)_(_2—1)—(_+1)(_2+1)=

(3)若(_—a)(_+2)=_2—6_—16,则a=

(4)方程y(y—1)—(y—2)(y+3)=2的解为

2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。

3、某人以一年期的定期储蓄把20__元钱存入银行,当年的年利率为_,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?

四、小结

让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。

五、布置作业

课本的分层作业题。

七年级数学下册教案 篇三

教学目标

1.使学生受到初步的辩证唯物主义观点的教育。

2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。

教学重点和难点

把比转化成分数。

教学过程设计

(一)复习准备

2.甲数与乙数的比是4∶5。

①甲数是乙数的几分之几?

②乙数是甲数的几分之几?

③甲数是甲、乙总数的几分之几?

④乙数是甲、乙总数的几分之几?

3.出示投影图:

师:看到此图你能想到什么?

学生说,老师写在胶片上:

①女生与男生的比是3∶2。

②男生与女生的比是2∶3。

4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?

60÷5=12(吨)

这种解答的方法,在算术上叫什么方法?

刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。

如:你们单元住着18家,每月交的水电费能平均分配吗?

又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?

比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)

(二)学习新课

1.出示例题。

例1第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?

学生读题,分析题中的条件与问题,教师把条件与问题简写出来:

然后再让学生带着三个问题去思考。

(1)两种作物一共几份?怎样求?

(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?

分析:

①用一个长方形表示全部土地。(画图)

②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)

师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。

观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?

(板书)总份数:3+2=5

3∶2,实质都表示倍数关系。现在这道题能够解决了。

粮食作物多少公顷?怎么算?

经济作物多少公顷?怎么算?

验算:

①求总数240+160=400

②求比240∶160=3∶2

答:粮食作物240公顷,经济作物160公顷。

(附图)

这道题就是“按比例分配”的问题。解决这个问题的关键是:首先

多少。

师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:

已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。

2.试一试。

抓住主要矛盾练习,运用规律解决问题。

把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?

总份数是几?怎么算?一中队占几分之几?二中队占几分之几?

①总份数4+5=9

验算:①总棵树20+25=45(棵)

②比20∶25=4∶5

答:一中队得20棵,二中队得25棵。

(三)巩固反馈

1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?

2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?

3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?

以上三题只列出主要算式即可。

4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?

分析条件、问题以后让学生讨论:

①三个班植树的总棵树是几?

②题目要求按什么比?人数比是几比几?

③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?

试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)

5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?

(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)

6.看图编一道按比例分配题解答。

7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)

方法1

8+1=9

方法2

5.4÷9=0.6(千克)

0.6×1=0(高考家长帮☆www.kaoyantv.com).6(千克)

0.6×8=4.8(千克)

方法3

方法4

5.4÷(8+1)=0.6(千克)

0.6×8=4.8(千克)

方法5

解:设氢为x千克。

5.4-x=8x

5.4=9x

x=0.6

5.4-x

=5.4-0.6

=4.8

方法6

解:设氧为x千克。

x=(5.4-x)×8

x=43.2-8x

9x=43.2

x=4.8

5.4-x

=5.4-4.8

=0.6

以上方法4,5,6要写全过程。

七年级数学下册教案 篇四

一、指导思想:

根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。

二、情况分析:

通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。

三、教学目标

知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。

过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。

情感与态度目标:培养学生学习数学的`兴趣,认识数学源自生活实践,最终回归生活。

四、教材分析

第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。

第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。

五、教学措施

1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。

2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。

3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

六、课时安排

教学进度计划安排如下:

第一周正数和负数及有理数5课时

第二周有理数的加减法5课时

第三周有理数的乘法5课时

第四周有理数的乘方5课时

第五周第一单元复习与单元测试5课时

第六周测试质量分析及小结 5课时

第七周整式----单项式5课时

第八周整式----多项式5课时

第九周整式的加减5课时

第十周期中复习及段考5课时

第十一周段考测试质量分析及小结 5课时

第十二周从算式到方程5课时第十三周解一元一次方程(一) 5课时第十四周解一元一次方程(二)5课时第十五周

第十六周

第十七周

第十八周

第十九周

第二十周

实际问题与一元一次方程第三单元复习及测试测试质量分析及小结多姿多彩的图形及直线射线、线段、角期末复习及考试5课时

七年级下册数学教案 篇五

教学目标:

1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

教学重点:

1.概率的定义及简单的列举法计算。

2.应用概率知识解决问题。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

教学过程:

一、复习旧知

1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,

不可能事件的有 ,必然事件有 ,不确定事件有 。

2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

二、情境导入

1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

(1)会出现哪些可能的结果?

(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

学生分组讨论,教师引导

三、探究新知

1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

学生分组讨论,教师引导:

(1)一次试验可能出现的结果是有限的;

(2)每种结果出现的可能性相同。

设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

2、探究等可能性事件的概率

(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

学生先独立思考,然后同桌间讨论,教师巡视指导

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

P(A)=/n

必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<p(a)<1< p="">

3、应用新知

例:任意掷一枚均匀骰子。

1.掷出的点数大于4的概率是多少?

2.掷出的点数是偶数的概率是多少?

解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

所以P(掷出的点数大于4)=2/6=1/3

2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.

所以P(掷出的点数是偶数)=3/6=1/2

四、实践练习

1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

2、先后抛掷2枚均匀的硬币

(1)一共可能出现多少种不同的结果?

(2)出现“1枚正面、1面反面”的结果有多少种?

(3)出现“1枚正面、1面反面”的概率有多少种?

(4)出现“1枚正面、1面反面”的概率是1/3,对吗?

3、将一个均匀的骰子先后抛掷2次,计算:

(1)一共有多少种不同的结果?

(2)其中向上的数之和分别是5的结果有多少种?

(3)向上的数之和分别是5的概率是多少?

(4)向上的数之和为6和7的概率是多少?

五、课堂检测

1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

A 2/9 B 1/3 C 4/9 D以上都不对

2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

A 0.34 B 0.17 C 0.66 D 0.76

3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

A 3/10 B 7/10 C 2/5 D 3/5

4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

P(摸到白球)=

P(摸到黄球)=

6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

六、课堂小结

回想一下这节课的学习内容,同学们自己的收获是什么?

1、等可能性事件的特征:

(1)一次试验中有可能出现的结果是有限的。(有限性)

(2)每种结果出现的可能性相等。(等可能性)

2、求等可能性事件概率的步骤:

(1)审清题意,判断本试验是否为等可能性事件。

(2)计算所有基本事件的总结果数n。

(3)计算事件A所包含的结果数。

(4)计算P(A)=/n。

布置作业:

1、P148习题6.4知识技能 1.2.3

2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

板书设计

等可能事件的概率(1)

等可能事件的特征:

1、 一次试验可能出现的结果是有限的;

2、 每一结果出现的可能性相等。

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

七年级数学下册教案 篇六

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解直线、射线和线段等概念的区别。

2.理解射线及其端点、线段及其端点、延长线等概念。

3.掌握射线、线段的表示方法。

(二)能力训练点

对学生继续进行几何语言和识图能力的训练,使学生逐步熟悉几何语句。准确区别直线、射线和线段等几种几何图形。

(三)德育渗透点

通过射线、线段的概念、性质、画法的教学,使学生体验到从实践到理论,以理论指导实践的认识过程,潜移默化地影响学生,形成理论联系实践的思想方法,培养学生勤于动脑,敢于实践的良好习惯。

(四)美育渗透点

通过射线、线段的具体实例体验形象美;通过射线、线段的图形体验几何中的对称美。

二、学法引导

1.教师教学:直观演示、阅读理解与尝试指导相结合。

2.学生学法:以直观形象来理解概念,以动手操作体会画法及性质的比较。

三、重点·难点·疑点及解决办法

(一)重点

线段、射线的概念及表示方法。

(二)难点

直线、射线、线段的区别与联系。

(三)疑点

直线、射线、线段的区别与联系。

(四)解决办法

通过学生小组内的讨论,针对直线、射线的概念、图形性质进行对比归类,教师根据学生回答整理,从而解决三者的区别与联系这一疑、难点。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片(软盘)、直尺。

六、师生互动活动设计

1.教师引导学生通过生活知识,阅读书本相应段落、自己动手操作等,使学生自己去体会、发现射线、线段的概念、表示、画法等。

2.通过反馈练习,及时掌握学生的学习情况。

七、教学步骤

(一)明确目标

通过本节课教学,应使学生理解和掌握射线、直线的概念和表示方法及与直线之间的关系,通过相关画图题,增强对知识点的认识,培养学生动手能力。

(二)整体感知

通过教师指导,学生积极思维,主动发现的模式进行教学,再辅以练习巩固。

(三)教学过程

创设情境,引出课题

师:在日常生活中,我们常常见到直线的实例,上节我们也举出了很多实例。我们知道,直线是向两方无限延伸的但在日常生活中,还有这样的现象:手电筒或探照灯射出的光束,只向一个方向延伸(可用电脑显示),这就是我们要研究的一种新的几何图形—射线。

板书课题:

[板书] 1.2射线、线段

探索新知

1.射线的概念

师:通过演示,我们发现射线向一方延伸。其实,它是直线的一部分,我们给它一个定义(板书射线的定义).

[板书]射线:直线上的一点和它一旁的部分叫做射线,这个点叫做射线的端点。

如图1,直线上的一点和它一旁的部分就是一条射线,点就是这条射线的端点。

图1

【教法说明】关于射线,教师可更形象地解释:“射线”就是像手电筒或探照灯“射”出的光束一样,因此,取名“射线”。这样可使意义与名词紧密联系起来,让学生对此印象深刻。对于定义只简单提一下;不作发挥,并告诉学生:我们以后还要学很多图形的定义。

2.射线的表示方法

学生活动:学生阅读课本第13页,射线的表示方法这一自然段,并在练习本上表示一条射线,并注意射线的表示方法中应注意什么。

【教法说明】学生看书能看懂的问题,教师就给学生一个机会,让学生自己支配自己,而不是由教师牵着鼻子走。

学生看书后回答射线的表示方法,教师演示画出图形。

(1)用射线的端点和射线上的另一点表示,但端点字母要写在前面。如图2,记作:射线。

图2

(2)射线也可以用一个小写字母表示。如图3:记作射线。注意“射线”两个字要写在的前面。

反馈练习〈出示投影1〉

如图3:射线与射线是同一条射线吗?射线与射线是同一条射线吗?射线与射线是同一条射线吗?

图3

【教法说明】通过以上练习,强调射线的方向性。端点相同,方向相同的射线才是同一条射线。

3.射线的画法

由学生看书后,在练习本上练习画图,找同学到黑板上画一条射线并表示出来。由学生说出画射线的要领。如图,画射线一要画出射线端点;二要画出射线经过点,并向一旁延伸的。情况。请同学们说出:射线与射线的端点,并画出这两条射线。

4.线段的概念

教师由射线定义引出线段定义,直线上的一点和它一旁的部分叫射线。我们研究了其表示方法,画法。那么,在直线上取两点又该怎么样呢?画出图形。

我们叫这两点间的部分为线段。(板书定义)

[板书]线段:直线上两个点和它们之间的部分叫做线段。这两点叫做线段的端点。如:长方体、正方体的棱等就是线段。

【教法说明】介绍线段定义后,可让同学们说出我们周围线段的实例,以调动其积极性,发挥其想像力。同时,也帮助理解线段的概念。

5.线段的表示方法

师:像直线和射线一样,线段也有两种表示法。你能依照直线和射线的表示方法,试着说出线段的两种表示方法吗?

同学之间相互讨论,最后得出线段的两种表示方法:如图4,、为端点的线段,可以记作线段或线段;也可以记作线段。

图4

【教法说明】有直线、射线表示方法的基础,对线段的表示方法学生能够举一反三,所以教师不必强加给他们,可以让学生自己想出其表示方法,体会其中的成就感。教学中一定注意,只要是学生自己能够理解、能够通过自身垢体会悟出的知识,教师就不要一味地“灌”,要使学生学会自我解决问题的方法。学生思考:线段和线段是同一条线段吗?

6.线段的画法

学生自己画线段,体会其画法,总结画线段的要领。

学生活动:在练习上画线段,同桌讨论画线段的方法和应注意的问题。根据学生回答情况,教师归纳注意问题。

(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况。(在这里可提问学生为什么。学生回答会说出:向两方延伸则成了直线,向一方延伸则成了射线。定会领略出射线、直线、线段的区别。)

(2)以后我们说“连结”就是指画以、为端点的线段。说明:“连结”是几何的专用名词,专指画出两点间的线段的意思。

7.直线、射线、线段的区别与联系

师:上节我们研究了直线的有关问题,这节我们又研究了射线和线段,通过我们的学习,你能试着总结一下直线、射线、线段三者的区别与联系吗?

学生活动:同桌间相互讨论,在练习本上小结三者的区别与联系。

【教法说明】学生总结一定不会有层次,但要放手让他们讨论,使学生学会归纳总结的方法。这也是学习几何中常用的方法,对一些概念、图形性质等往往需要对比归类,发现它们之间的相同点和不同点。教师从开始就要注意,引导学生学会对所学知识进行归纳、对比的学习方法。

根据学生回答教师整理:

联系:射线、线段都是直线的一部分,线段是直线的有限部分。

区别:直线无端点,长度无限,向两方无限延伸。射线只有一个端点,长度无限,向一方无限延伸。线段有两个端点,长度有限。

反馈练习(投影出示)

【教法说明】对于练习中的第1题要让学生把图形和几何的语句统一起来;第2题也可问以为端点有几条射线;第3题要注意所填的词应恰当。

(四)总结、扩展

由学生填写下表,归纳本节知识点。

八、布置作业

看本节所讲内容,预习下节内容。

七年级下册数学教案 篇七

【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。

【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。

【教具准备】小黑板 科学计算器

【教学过程】

一、复习导入

1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)

2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)

3、0.36的平方根是( )

4、(-5)2的算术平方根是( )

二、练习内容

(一)填空

1、若=1.732,那么=( ) 2、(-)2=( )

3、 =( ) 4、若_=6,则=( )

5、若=0,则_=( ) 6、当_( )时,有意义。

(二)选择

1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )

A.B.C.D.; 2、4_2-49=0; 3、(25/81)_2=1;

4、求8+(-1/6)2的算术平方根;

5、求b2-2b+1的算术平方根;(b<1)

6、

7、 ;(用四舍五入方法取到小数点后面第三位)

8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。

三、小结与巩固

七年级数学下册教案 篇八

教学目标:

1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

教学重点:

同底数幂乘法的运算性质,并能解决一些实际问题。

教学过程:

一、复习回顾

活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

二、情境引入

活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的。形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

三、讲授新课

1.利用乘方的意义,提问学生,引出法则:计算103×102.

解:103×102=(10×10×10)×(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)=105.

2.引导学生建立幂的运算法则:

将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

用字母m,n表示正整数,则有即am·an=am+n.

3.引导学生剖析法则

(1)等号左边是什么运算?(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用提高

活动内容:

1.完成课本“想一想”:a?a?a等于什么?

2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

3.独立处理例2,从实际情境中学会处理问题的方法。

4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

五、拓展延伸

活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

六、课堂小结

活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

七、布置作业

1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

2.完成课本习题1.4中所有习题。

七年级数学下册教案 篇九

教学过程(师生活动):

提出问题:

某地庆典活动需燃放某种礼花弹。为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方。已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长_(m)应满足怎样的关系式?

你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程。

探究新知:

1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法。教师规范地板书解的过程。

2、例题。

解下列不等式,并在数轴上表示解集:

(1)_≤50(2)-4_3

(3)7-3_≤10(4)2_-33_+1

分组活动。先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况。教师作总结讲评并示范解题格式。

3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?

让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。

巩固新知:

1、解下列不等式,并在数轴上表示解集:

(1)(2)-8_10

2、用不等式表示下列语句并写出解集:

(1)_的3倍大于或等于1;

(2)y的的差不大于-2.

解决问题:

测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位。某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?

总结归纳:

围绕以下几个问题:

1、这节课的主要内容是什么?

2、通过学习,我取得了哪些收获?

3、还有哪些问题需要注意?

让学生自己归纳,教师仅做必要的补充和点拨?

七年级下册数学优秀教案 篇十

[教学目标]

1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

[教学重点与难点]

重点:邻补角与对顶角的概念。对顶角性质与应用

难点:理解对顶角相等的性质的探索

[教学设计]

一。创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二。认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

几何语言准确表达

;

有公共的顶点O,而且 的两边分别是 两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交 所形成的角 分类 位置关系 数量关系

教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质

三。初步应用

练习:

下列说法对不对

(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2) 邻补角是互补的两个角,互补的两个角是邻补角

(3) 对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四。巩固运用例题:如图,直线a,b相交, ,求 的度数。

[巩固练习](教科书5页练习)已知,如图, ,求: 的度数

[小结]

邻补角、对顶角。

[作业]课本P9-1,2P10-7,8

[备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )

两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )

二填空题

1如图,直线AB、CD、EF相交于点O, 的对顶角是 , 的邻补角是

若 : =2:3, ,则 =

2如图,直线AB、CD相交于点O

5.1.2 垂线

[教学目标]

1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2. 掌握点到直线的距离的概念,并会度量点到直线的距离。

3. 掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]

1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计]

一。 复习提问:

1、 叙述邻补角及对顶角的定义。

2、 对顶角有怎样的性质。

二。新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作 ,垂足为O。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

反之,

(二)垂线的画法

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1 过一点有且只有一条直线与已知直线垂直。

练习:教材第7页

探究:

如图,连接直线l外一点P与直线l上各点O,

A,B,C,……,其中 (我们称PO为点P到直线

l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成: 垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点 P到直线l的距离。

例1

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有( )

A. 1个 B. 2个

C. 3个 D. 4个

解:A

例2 如图,直线AB,CD相交于点O,

解:略

例3 如图,一辆汽车在直线形公路AB上由A

向B行驶,M,N分别是位于公路两侧的村庄,

设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

练习:

1.

2.教材第9页3、4

教材第10页9、10、11、12

小结:

1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;

2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

作业:教材第9页5、6.

阅读是学习,摘抄是整理,写作时创造。上面就是高考家长帮给大家整理的10篇七年级下册数学教案,希望可以加深您对于写作七年级下册数学教案的相关认知。