1. 主页 > 知识大全 >

高考数学答题技巧(通用7篇)9-7-69

高考数学应该是大家最担心的科目了,毕竟很多人不擅长数学啊。数学考试有什么答题技巧可以试试的呢?下面是快回答编辑给家人们整编的高考数学答题技巧(通用7篇),欢迎阅读。

高考数学答题技巧 篇一

一、选择题:

高考数学题选择题占40%的比重,把握好选择题是考取高分的基础。选择题中一些特殊方法,如排除法、特殊值法、特殊图形法、极限思想等的合理运用会使结果更准确,速度更快,尤其是遇到较难的题目,首先应考虑是否可以用这些方法来解。有些题目其实就是考查学生灵活应对能力的,常规思维很难解决。而哪些题目可以用此法,关键是看题中所给的条件和所求结论是否在一定范围内具有一般性。

这里提一下特殊值法,特殊值法最适合的是选择题,尤其适合的是选项里都是一个答案的题目,可以直接用特殊值代入验证。不过,用特殊值要熟练,思路要清晰,基础知识要完全考虑到,而且不能脱离题干,不然很容易得出错误的结论。另外,特殊值法并不是只是代入一个特殊值就好了,可以尽量把能想到的两三个特殊值代进去,比如在三角形中,特殊值可以代入30、60、90,但同时也应该注意三角形边角比例的关系,不然很容易得出错误的答案,这样就得不偿失了。

示例

解析

这里解析中取的特殊值是等边三角形,三个内角均为60,如果取三个角分别为30、60、90,虽然同样是我们比较熟悉的特殊值,但却跟题干中所提到的三个角对应的三条边a、b、c为等差数列不符,自然就无法得到正确答案了。

二、填空题:

概念要清,方法要对,计算要准。填空题对思维的严密和计算的准确性要求都很严格。符号、小数点的错误都会造成劳而无获,因此要特别注意运算的规范,要一丝不苟,不可贪快不细,做无用功。

三、解答题:

这一类型的题目的要求除了与填空题相同外,还应注意:

1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。

2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握宁慢勿粗。

3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。因为高考越来越注重基础与通性通法的考查。举个例子来说吧,解析几何对大部分学生来说很难得全分,通常解析几何放在高考最后一题或倒数第二题的位置,算是一个压轴题吧。这类解析几何题的通法就是把直线方程与曲线方程联立,虽然有些时候可能计算会比较麻烦,但是都能做得出来。如果过于关注技巧,对有些题目就不适用了。

如以下的题目,就是直线和双曲线方程联立的一道题:

4、对绝大部分同学来说,要把主要精力和时间放在常规题目上(一般是指前19道题和最后1道选做题)。从高考的试卷来看,它的基础分可能会占到百分之七八十,如果你把基础题、常规题做好了,取得中等成绩是没问题的。在这个基础上,再拿一些难题的分数,就能获得比较理想的分数了。反过来,如果求快心切,就很容易在前面的基础题上出现本来可以避免的失误,而后面的难题又不一定得分,这样和别人的差距就拉大了,很吃亏。

高考数学答题技巧 篇二

“高分靠实力,满分靠运气”。首先您得有这个心态,才能继续往下看。

先说说训练。主要分两步走,如果实力可以做到除了后三道大题其余均会做,那么老师发的每一套卷子就先不做后三题,这样可以节约出大量的时间(因为后三道的任何一道都够做一套选择题了)训练准确度。大约两周的时间吧,把这一关过了,最后三道题能剩将近一小时吧,而且做5套卷子能错1道题左右。即使能做出的题目,或是难题中比较简单的前几小问也要比较认真地过一下答案,因为很多时候虽然能做出来但是可能方法不是最直接的,表述也不是最严密的,模仿标准答案的思路对于解决答题标准性问题帮助很大。

然后开始攻克后三题。先找来了近三年各个省的后2-3题,把他们按六大专题归了类(就是三角函数,立体几何,概率统计,数列,导数,解析几何),每周一个专题,先做一半的题,总结一次方法,再做另一半的题目。这样又花了一个半月的时间搞定了。

压轴题的难度一般较大,因此计算能力的练习是必要的。这里的计算能力不仅仅指数字计算,还有化简带有一堆符号的等式不等式。扎实的基本功是前提。

压轴题的思路往往比前边的题多拐一些弯,所以在做压轴题的时候,思维就要调整为压轴题模式,不要怕思维绕和计算量大,只要认为方法正确就做。

每一个专题的压轴题都可以分为几个类型,而每个类型会有一点共性,做的时候多总结会大有裨益。

当然,压轴题即使你认真做了,也不一定能做出来,因此必须学会放弃(这条是高考考场上要注意的)。

高考数学解题技巧 篇三

1.三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2.解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3.数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4.离散型随机变量的均值与方差

解题思路:

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

5.圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

答题步骤:

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

6.解析几何中的探索性问题

解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。

答题步骤:

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。

高考数学解题技巧 篇四

高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。现总结了十大选择题的解题技巧,帮助同学们提高答题效率及准确率。

1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学答题技巧 篇五

一、调整好状态,控制好自我。

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5~10分钟内。建议同学们提前15~20分钟到达考场。

二、通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

三、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求 快、准、巧,忌讳 小题大做。 填空题也是只要结果、不要过程,因此要力求 完整、严密。

四、审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

五、保质保量拿下中下等题目。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

六、要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被分段扣点分。

难题要学会

①缺步解答:

聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。

②跳步答题:

解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一卡壳处。如果时间不允许,那么可以把前面的写下来,再写出证实某步之后,继续有一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作已知,先做第二问,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。

数学解题技巧 篇六

1、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

2、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

3、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

4、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

5、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

高考数学答题技巧 篇七

数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,有些题型概念性比较强,那么这些试题传递出来的就是以数学学科规定和习惯为依据的,那么同学们就千万不能够擅自去改变它,而是应该对号入座。数学选择题的解题方法也是多种多样的,最重要的还是审题,然后懂得挖掘隐藏条件,再就是要懂得选择解题方法同时控制好解题时间。

填空题“直扑结果”

填空题和选择题都是属于客观性的题目,这类题目的特点就是不计较同学们的解题步骤,最在乎的是同学们的答案,只要答案对了,那么分数也就到手了,因此,在解答这些题目的时候,要正确,迅速,稳定,心态一定要好,不能够马虎,不能粗心。

解答题“步步为营”

解答题是分值占的较大,难度也比较大的题目,因此,在做解答题的时候,就不能够像做填空题和选择题那样只需要一个结果就好了,做解答题需要将解答过程一个个的写出来,一步一步来,要知道,综合题目,阅卷老师都是看答题要点给分的。所以,在做题的时候要知道多少就写出来多少,不要纠结于自己到底会不会做这道题。