1. 主页 > 知识大全 >

五年级上册数学教案精选12篇3-13-26

教案可作为检查和评价教师对课程教学内容的熟悉程度、业务水平的高低及教学方法运用是否得当等方面的依据。这里是勤劳的小编为大伙儿收集的五年级上册数学教案精选12篇,欢迎借鉴。

五年级上册数学教案 篇一

教学内容:

加、减法的意义和各部分间的关系P2P3

教学目标:

1、通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。

2、在经历探索发现加与减的互逆关系及加、减法各部分之间的关系的过程中,培养学生的比较、概括、归纳、判断推理能力。

3、运用加、减法的关系解决简单的实际问题。

教学重点:

进一步理解加、减法的意义,掌握加、减法之间的关系。

教学难点:

理解并掌握加法与减法之间的互逆关系。

教学准备:

实物投影、课件

教学过程:

一、导入新授

加法和减法是一对好朋友,他们之间有什么秘密呢?今天就来研究加、减法的意义和各部分之间的'关系。板书课题。

二、探索发现

1、探究加、减法的意义。

(1)教学加法的意义

出示教材P2例1主题图

思考:怎样求西宁到拉萨的铁路长多少千米?怎样计算?你能用线段图表示表示它们之间的关系吗?

学生独立思考后独立列式:814+1142=1956(千米)并展示线段图。

结合加法算式,说一说加法算式的意义。

教师总结:把两个数合并成一个数的运算,叫做加法。

你知道加法各部分名称吗?

教师总结:相加的两个数叫做加数,加得的数叫做和。

(2)教学减法的意义

五年级上册数学教案 篇二

教学目标

1、通过活动使学生感受并认识圆,知道什么是圆心、半径和直径,能借助于工具画出指定大小的圆。

2、经历猜想、操作、验证、讨论和归纳等数学活动,发现并掌握圆的有关特征,会应用圆的有关知识解决简单的实际问题。

3、通过活动使学生进一步积累认识图形的学习经验,增强空间观念,体验图形与生活的联系,感受平面图形的学习价值。

教学重点

认识圆、掌握圆的有关特征、会用工具画圆。

教学难点

掌握圆的有关特征。

教学准备

教师:大圆规、课件、1张圆纸片学生:小圆规、剪刀、4张白纸

教学过程

教师活动

学生活动

一、感受认识

1、课件出示一枚硬币。

(1)提问:硬币的面是什么形状的?板书课题:圆

(2)出示图片问:你能从里面找到圆吗?

2、用手在空中画一个圆。

问:圆和我们以前学过的平面图形有什么不同?

生:圆形

空中画圆

二、自主画圆

1、师:如果要你画一个圆,你准备怎么画?

解释:“不以规矩,不成方圆”的本意

选择一种方式动手画圆。

2、提问:用什么工具能画一个标准的圆?

(1)第一次用圆规画圆,感受圆规画圆的技巧

(2)(视频演示)再次用圆规画圆,学会用圆规画圆的技巧

师:用圆规画圆有哪些步骤?

生:……

画圆1

生:圆规

画圆2、3

生:……(剪圆)

三、寻找特征

1、认识圆心

(1)指出:用圆规画圆时,针尖固定的这一点叫做圆心。板书:圆心

(2)圆心的作用

师在黑板上随处点一个点问:我把圆心点在这里,你觉得这个圆会画在哪里?点在那里呢?这说明了什么道理?

标圆心

生:圆心位置决定圆的位置

2、认识直径

(1)把圆对折1次打开描出折痕,看有什么发现?

指出:通过圆心并且两端都在圆上的线段是直径。板书:直径

(2)探寻直径的特征

①师在黑板上画几条线段问是不是直径

②直径有多少条?它们的长度都相等吗?

生:折痕都通过圆心

画直径并测量

3、认识半径

(1)在圆中画出一条半径问学生:是直径吗?

指出:连接圆心和圆上任意一点的线段是半径。板书:半径

(2)探寻半径的特征

(3)画一个半径是3厘米的圆

画半径并测量

画圆4

教师活动

学生活动

4、探索半径与直径的关系

(1)出示:刚才我们研究了直径和半径的的各自特征,直径和半径之间有什么关系呢?

(2)用字母式子表示:板书:d=2r或者r=d÷2

(3)画一个直径是4厘米的圆,你准备怎么画?

(4)完成练习十七第1题。

测量探索

数学五年级上册教案 篇三

教学内容:

课本9~10页上的内容。

教学目标:

1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。帮助学生掌握找一个数的全部因数的方法。

2、在1100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

3、通过练习,进一步巩固这种方法,并能运用这种方法解决一些实际的问题。

教学重点:

学会找一个数的因数的方法。

教学难点:

在1100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

教具准备:

课件、12个同样的小正方形纸板。

教学过程:

一、揭示课题。

教师:这一节课,老师要和同学们一起去找一种数,找什么数呢?是找因数。

板书课题:找因数。

教师:你知道什么是因数?

二、组织活动,探索新知。

活动一:拼一拼

1、用12个小正方形拼成一个长方形,有哪几中拼法?

2、在下面的方格内画一画。

(自己试着独立画一画,看看你有几种画法,画完后与你的同学进行交流。)

3、根据学生的回答,教师进行板书。

汇报交流自己的画法

12=112 12=26 12=34

所以可以拼成三种长方形。

4、小结:1、2、3、4、6和12是12的全部因数。

活动二

试一试

1、采蘑菇的小姑娘,她采了6个蘑菇,这6个蘑菇可以怎么样摆放?找出6的因数。

2、小姑娘昨天采了21个,今天采了30个,你能找出21和30 的因数吗?

(自己试着找一找,并说一说自己所用的方法。)

3、你能试着找出21和30公共的因数吗?你是怎样找的?

三、巩固练习(练一练)

1、小狗吃骨头,看看每只小狗该吃哪块骨头?

2、试着找一找32的所有因数。并说一说,你是怎么找的?

四、总结。

这节课你学会了什么呢?指名学生说一说,教师归纳。

五、作业。

1、练一练第1、2、5题

2、优化作业

数学五年级上册教案 篇四

教学内容:

P10例6、做一做,P13练习二第1—3题。

教学目的:

1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

2、培养学生根据具体情况解决实际问题的能力。

教学重点:

用“四舍五人法”截取积是小数的近似值的一般方法。

教学难点:

根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

教学过程:

一、激发:

1、口算。

1.2×0.3 0.7×0.5 0.21×0.8 1.8×0.5

1-0.82 1.3+0.74 1.25×8 0.25×0.4

0.4×0.4 0.89×1 0.11×0.6 80×0.05

2、用“四舍五人法”求出每个小数的近似数。(投影出示)

保留整数 保留一位小数 保留两位小数

2.095

4.307

1.8642

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

(2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、尝试:

谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍, 所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、生列式,板书:0.049×45

4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。

5、引导学生观察、思考:

(1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

6、专项练习(根据下面算式填空)

3.4×0.91=3.094积保留一位小数是( ),保留两位小数是( )。

7、尝试后练习:

▲P10页做一做1.计算下面各题。

0.8×0.9(得数保留一位小数) 1.7×0.45(得数保留两位小数)

▲判断,并改错。

10.286×0.32=3.29(保留两位小数)

3.27×1.5=4.95 1.78×0.45≈0.80(保留两位小数)

1 0 .2 8 6 3 . 2 7 2 . 0 4

× 0. 3 2 × 1. 5 × 2 8

2 0 5 7 2 1 6 3 5 1 6 3 2

3 0 8 5 8 3 2 7 4 0 8

3. 2 9 1 5 2 4. 9 0 5 5 7 1 2

三、运用

1、一千克白菜的价钱是6。78元,妈妈买了0。8千克,应付多少题?

虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。

2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?

3.059 3.578 3.574 3.583 3.585

四、体验:

谁来小结一下今天所学的内容?

五、作业:

P8第1题。

课后小记:

补充的一道生活中购物的题体现了数学在生活中的应用,但全班仅一人主动保留了结果,这反映出数学与生活脱离的现象及待解决与完善。但这题在现实生活中到底是应该保留几位小数呢?学生保留的是一位,而我建议他们保留两位,哪种更合理?更符合生活实际?

数学上册五年级教案 篇五

教学内容:

书P、63—65页。

教学目标:

1、对第三单元所学的内容进行归纳整理,帮助学生理清相关知识之间的关系,进一步深化对各个概念的理解。

2、通过练习,巩固所学的内容,加深对分数的认识。

3、经历对所学知识进行整理与复习的过程,培养他们的概括能力与整理能力。

教学重点:

理清相关知识之间的关系,进一步深化对各个概念的理解。

教学准备:

学生准备好几张6厘米长,4厘米宽的纸片。

教学过程:

一、你学到了什么?

1、 先仔细阅读教材,对本单元学到的知识进行简单的整理,并对每个专题栏目用简单的语言进行概括,然后与同学交流,最后根据自己的体会,简单地说明单元知识之间的联系与学习中的重点、难点。

2、 你学习了哪些解决问题的策略?举例说明,并与同学交流。

二、练一练。

1、第1题,猜一猜他俩各有几本书。主要让学生根据分数的意义来解决,并体会分数的相对性。请学生先独立完成,对于部分有困难的学生,让他们画一画直观图,以帮助理解。

2、第2、3、4题,请学生们独自完成。

3、第5题,将下列分数分类。分成接近 的和接近1的这两类。学生先填写,然后请学生交流思考的方法,对有困难的学生建议他借助第33页的分数图进行思考。

4、第6、7、8、9、10题,请学生先独自完成,然后集体订正。

5、第6题,比较下面各组分数的大小。

6、第7题,填一填。

7、第8题,在括号里填上适当的数。

8、第9题,写出下列各组数的最大公因数。

9、第10题,把下列分数化成最简分数。

10、第11题,剪一些长6厘米,宽4厘米的长方形的纸片,至少需要几张这样的纸片才能拼出一个正方形。先请学生拼一拼,试一试,观察所拼出的正方形的边长与小长方形的长、宽的关系,然后概括出运用求最小公倍数直接进行计算的方法。

五年级上册数学教案 篇六

教材第70—72页

教学目标:

1、学生联系现实问题中的数量关系,理解和掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。

2、学生在按顺序进行计算和运用学过的计算解决实际问题的过程中,进一步增强策略意识,感受数学的应用价值,提高解决实际问题的能力。

教学重难点:

掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。

教学过程:

一、谈话引入

1、谈话:同学们喜欢下棋吗?为了丰富同学们的课余生活,李老师正在体育用品商店为同学们购买中国象棋和围棋呢!我们一起去看看吧!

出示情境图,提问:从图中你知道了什么?这道题要求的'问题是什么?

再问:想一想,要求李老师一共要付多少元,要先算什么?请按自己的想法列式解答,并与同学交流。

指名板演,并组织讲评。

提问:如果列综合算式解答这道题,可以怎么列?

根据学生回答板书:12×3+15×4。

2、揭示课题,并板书课题。

二、展开教学

1、教学例1。

启发:你会算这样的三步混合运算式题吗?请同学们先根据例题中的填空想一想,这道算式可以按怎样的顺序计算?再试着算一算。学生尝试计算,教师巡视,并指名板演。

追问:你觉得按这样的顺序计算正确吗?能联系实际问题中的数量关系来说说为什么可以这样算吗?

比较分别计算出两个积与同时算出两个积的两种情况。提问:谁的计算过程更简略一些?

2、教学“试一试”。

(1)出示“试一试”。

谈话:这里还有一道三步混合运算的算式,你能试一试吗?先算出结果,再和同桌说说,你是按怎样的顺序计算的。

学生尝试计算,教师巡视,指名板演。

(2)反馈,说说这道题的运算顺序。

3、引导归纳。

谈话:今天我们学习的三步混合运算,都是不含括号的算式。请同学们想一想,在没有括号的算式里,如果既有乘、除法,又有加、减法,要按怎样的顺序计算?先在小组里互相说一说。

学生交流。

三、练习

1、完成“练一练”。

2、做练习十一第2题。

(1)出示左边一组题,比较一下,它们有什么相同和不同的地方?

(2)学生练习后,试着解释两道题得数相等的道理。

(3)出示右边一组题,让学生先按顺序计算,再和小组里的同学说说这两道题的相同点和不同点。

组织交流。

3、做练习十一第4题。

出示题目,提问:题目的已知条件有哪些,要求的问题是什么?要求合唱组有多少人,要先求什么?要求书法组和美术组一共有多少人,要先算出哪个组的人数?

学生列综合算式解答,并组织反馈。

四、课堂总结

通过这节课的学习,你有什么收获呢?

五年级上册数学教案 篇七

教学目标

1.使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

2.能根据题目给出的信息设定未知数,列出简单方程并求解。

教学重、难点

1.掌握解方程的依据、步骤和书写格式。

2.方程的解和解方程两个概念间的联系及区别。

一、课题讲解

1.方程的定义和意义

(1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来称物品

78=234

x-8=513-8=5

x÷6=742÷6=7

(8)师引导学生观察上面的等式,思考并回答下面的问题。

①方程是不是一种等式?(是等式。)

②方程与一般的等式相同吗?你发现方程有什么特点?

③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。

明确:含有未知数的等式,叫做方程。

(9)练习巩固

下面哪些式子是方程?

2.解简易方程

(1)再次强调方程的定义:含有未知数的等式叫做方程。100+x=250是方程,x=150是方程的解。求未知数的过程就是解方程。师:回答什么叫方程的解?什么叫做解方程。

(2)指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)

(3)出示例题:

①你能根据图中给出的信息列出什么样的等式?在你列出的等式中,x相当于什么数?

②根据四则运算各部分之间的关系,x应该怎么求?

③解方程的步骤和书写格式是怎样的?

师讲解:首先要写“解”字,然后根据四则运算之间各部分的关系及运算定律进行思考;

x+3=9,方程左右两边同时减去一个数,左右两边仍然相等,所以x=9-3,x=6。运算的“根据”可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。

接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。

(4)解方程3x=18

学生独立完成,教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。

师再次强调解方程的步骤和书写格式以及验算过程。

(5)完成例题

①根据图中给出的信息列出什么样的等式?在你列出的等式中,x相当于什么数?

②根据四则运算各部分之间的关系,x应该怎么求?

③解方程的步骤和书写格式是怎样的?

学生独立完成后,教师板演整个解题过程。着重强调思考过程以及书写格式。学生自学例题4。

二、体验

这节课我们学习了什么?

(方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写“解”字,上、下行的等号要对齐,注意不能连等。)

五年级上册数学教案 篇八

课型:

新授

教学内容:

教材P7及练习二第3、5、6、7、10题。

教学目标:

知识与技能:

使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

过程与方法:

理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

情感、态度与价值观:

养成认真计算与及时检验的学习习惯。

教学重点:

运用小数乘法的计算法则正确计算小数乘法。

教学难点:

正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

教学方法:

观察、分析、比较。

教学准备:

多媒体。

教学过程:

一、复习准备

1、口算。0.9×6 7×0.08 1.87×O

0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

指名学生口算,然后集体订正。

2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

3、揭示课题:这节课我们继续学习小数乘法。(板书课题)

二、情景引入

1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

学生观察情境图,提取信息:

所求问题:(鸵鸟的最高速度是多少千米/小时)

所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)

思路分析:

(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

(2)追问提高学习新知的兴趣:

①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

让学生独立计算出鸵鸟的最高速度,并集体订正。

(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

学生可能会有以下几种验算的方法:

①用原式再计算一遍。

②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

③观察法:观察小数位数或第二个因数比1大还是比1小。

④用计算器进行验算。

师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?

生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

三、巩固练习

1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

作业:5、6、7

课外作业:教材第9页练习二第10题。

板书设计:

求一个数的小数倍数是多少及验算

数学五年级上册教案 篇九

一、 教材分析

本节课内容在人教版五年级上册50——51页,是在学生学完了“可能性”这一单元后,设计了这个以游戏形式探讨可能性大小的实践活动。 教材以连环画的形式来展示活动的过程。从知识内容上看,整个活动分为以下三个层次:

1、组合(质疑)

教材通过让学生同时掷两个相同的骰子(六个面上分别写着数字1~6),把两个朝上的数字相加,看和可能有哪些情况,这是一个"组合"问题。根据前面所学的"组合"知识,学生可以把两个数字相加的和的所有情况列出来。

2、事件的确定性与可能性(实验)

在上面的所有"组合"中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和2,3,4,…,12都是可能发生的事件,但不可能是1和13,这是一个确定事件。

3、可能性的大小(验证)

虽然掷出的两个数的和可能是2,3,4,…,12中的任一个数,但发生的可能性大小是不同的。教材通过游戏的方式,让学生探索、比较掷出各种和的可能性大小,由于学生还不会求掷出每个和的确切"概率",所以只是通过实验粗略地比较一下。

二、 教学目标

1、通过本活动,使学生初步获得一些数学活动的经验,经历"猜想、实验、验证"的过程,引导学生在活动中发现问题,分析问题,体会数学在生活中的应用。

2、初步渗透比较、归纳,概率统计及有序思考等多种数学思想,透过现象看本质,感受偶然性后面的必然性。

3、结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

4、通过合作,培养学生的合作意识。

三、教学重、难点

教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。

教学难点: 应用已有的数学知识,探索事件发生的可能性,提高学生的解决问题的能力。

四、课前准备

骰子 、表格、统计图、课件等

五、教学过程:

(一)故事引入,设置悬念

1、老师讲述阿凡提智斗巴依老爷的故事。(课件出示阿凡提图片)。

当时有个地主巴依老爷,十分狡猾奸诈,经常欺压百姓。有一天,巴依老爷又想出了个诡计,想要再一次提高穷人的田租,这次阴谋如果让他得逞,穷人的日子就更不好过了。在这危难时刻阿凡提来了,他代表穷人跟巴依老爷进行谈判,谈判决定,双方利用掷骰子比胜负,如果巴依老爷输了,他将不再加租,比赛方法是:准备两颗骰子,双方每人掷骰子10次,将每次的两颗骰子朝上的数字相加得到“和”,把这些“和”分为两组,一组是“5、6、7、8、9”五个数字,另一组是“2、3、4、10、11、12”这六个数。双方各选一组“和”。掷出来的“和”在哪一组里就算这一组赢一次,掷完后,看谁赢的次数多,谁就获胜。

同学们,你们想让哪方获胜?的确,聪明的阿凡提战胜了巴依老爷,取得了胜利!

2、猜一猜:阿凡提选了哪组“和”?

师:同学们各有各的猜想,那到底阿凡提选了哪组“和”呢?老师先不告诉你们谜底,而是为大家准备了两颗骰子,我们一起动手验证一下。

3、揭示课题

师:当我们有不同意见时,动手试一试是很不错的办法。这节课,就让我们一起来掷一掷。(板书课题:掷一掷。)

(二)学生代表游戏,感知体验

1、你们都玩过骰子吗?(出示“骰子”)一颗骰子中藏着哪些数学知识?(骰子上有6个数、有6个面,是个正方体……)

2、掷一颗骰子,掷出的数可能是哪些?最小是几?最大是几? 掷出每个数的可能性相等吗?(相等)

3、列举“和”的可能

同时掷两颗骰子, 得到的两个面朝上的点数之和可能有哪几种呢?想一想,写一写,再和同桌交流交流。

(1)同时掷两颗骰子,得到两个数的“和”可能有哪些? (2、3、4、5、6、7、8、9、10、11、12)

(2)掷出的两个数的和可能是1或13吗?为什么? (因为两颗骰子最小是1和1,所以最小的“和”是2,不可能是1。)

现在我们把可能出现的11个“和”分成A 、B两组,A组5、6、7、8、9五个数字,B组2、3、4、10、11、12六个数字。

4、游戏:掷一掷

A、B两组各派一名代表,进行掷骰子比赛。

游戏规则:每人轮掷两颗骰子10次,如果和是“5、6、7、8、9”算A组赢,否则算B组赢。

双方代表进行掷骰子游戏,其他同学在记录表中记录。

师:同学们,你们发现了什么?(A组选的“和”种数明明比B组少,怎么会是A组获胜呢?)

(三)动手操作,自主探究

师: A组选的“和”种数明明比B组少,怎么会是A组获胜呢?想不想知道

其中的奥秘?那你们就自己动手验证一下。

1、同桌合作,实验验证

实验方法:

(1)两人一组,轮流掷。一人同时掷两颗骰子并算出两数字和。一人根据掷出的“和”完成“统计图”(横线上的数据表示掷出的“和”,竖线上的数据表示掷出的次数。)“和”是几就在几的上面涂一格,涂满其中一列,游戏结束。

(2)边掷边想:掷出哪些“和”的次数比较多?你发现了什么?

(学生分小组活动,把结果记录在统计图上,教师巡视,指导有困难的小组)

2、分析记录表,提升猜想(选择几组有代表性的上台展示)

师:已经涂满其中一列的同学,请仔细观察你们的统计图,从图中你发现了什么?同桌两人交流一下。

生1:我们组出现较多的和是5、6、7、8、9

生2:我们组掷出的和中2和12特别少

生3:发现掷出的和在靠近中间位置的次数较多,而靠近两端位置的次数较少……

师:那有一个小组12一次也没掷出来,是不是说不可能掷出12呢?

师:那现在如果让你们再掷一次,要想胜率大一些,你们选择哪组“和”?(和“5、6、7、8、9”这一组,出现的可能性较大)

( 四)回顾整理,反思提升

1、师:为什么掷出和是5、6、7、8、9的可能性较大?里面藏着什么奥妙呢?想不想继续探究探究?

老师为你们准备了一张学习纸,最上面和最左边表示两个骰子上的点数,请你们同桌合作把所有可能出现的和算出来,再认真观察,看看有什么发现。

2、 反馈交流,展示结果:

6+1

5+1 5+2 6+2

4+1 4+2 4+3 5+3 6+3

3+1 3+2 3+3 3+4 4+4 5+4 6+4

2+1 2+2 2+3 2+4 2+5 3+5 4+5 5+5 6+5

1+1 1+2 1+3 1+4 1+5 1+6 2+6 3+6 4+6 5+6 6+6

和: 2 3 4 5 6 7 8 9 10 11 12

师:从这里,我们可以直观地看出掷出的“和”一共有36种情况。 “和”是“2、3、4、10、11、12”的情况只有1+2+3+3+2+1=12种,而和是“5、6、7、8、9”出现的次数共有4+5+6+5+4=24次。24次比12次大得多,出现的可能性也要大得多。

师:现在你认为阿凡提选的是哪组“和”?为什么? (和“5、6、7、8、9”这一组,出现的可能性较大)

3、摸奖活动:

好消息:凡在本商场购物满880元的顾客,可到抽奖箱抽两个数字球,根据两个球上数字的和领取相应的奖品。

摸奖规律:箱内放十二个球,每两个球上分别写着1~6六个数字,每次摸出两个球。

奖项设计:摸出两球之和是“1”为特等奖 ,奖励手机一部。 摸出两球之和是“2”或“12”为参与奖,奖励矿泉水一瓶。

师:看了这个摸奖规则你有什么要说的?

( 五)课堂总结,课外延伸

1、说说这节课的收获。

2、小课题研究

这节课我们利用骰子,经历了“猜想、实验、验证”的过程,研究了骰子“和”中的奥秘。其实,关于骰子中的数学远不止今天我们研究的这些。课后大家可以再去研究研究 。

(1)同时掷2颗骰子,计算出朝上面的2个数的差。你能发现哪些差出现得多?哪些差出现得少?

(2)同时掷3颗骰子,计算出朝上面的3个数的和。你能发现哪些和出现得多?哪些和出现得少?

数学上册五年级教案 篇十

教学目标

1、能把一个数乘两位数改写成连续乘两个一位数,或把25、125这样的特征数看成整百、整千数,或把这个两位看成两个数相加,再计算。

2培养学生分析、判断、推理的能力,增强使用简便算法的择优意识。

3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题

教学重点:

把一个两位数改成两个一位数相乘。

教学难点:

根据另外一个因数的特点,把一个两位数改成两个合适的一位数。

预设过程

一、复习运算定律性质

能口述运算定律或性质。

1、说说学过的运算定律或运算性质。

(教师板书字母表达式)

2、请学生根据字母表达式说出定律或性质的内容。

3、议:它们分别适用于什么情况?

1、适用于连加:

a+b=b+a

(a+b)+c=a+(b+c)

2、适用于连乘:

a×b=b×a

(a×b)×c=a×(b×c)

3、适用于乘加或乘减:

(a+b)×c=a×c+b×c

(a-b)×c=a×c-b×c

4、适用于连减:

a-b-c=a-(b+c)

a-b-c=a-c-b

5、适用于连除:

a÷b÷c=a÷(b×c)

a÷b÷c=a÷c÷b

4、议:乘法结合律和乘法分配律有什么异同?

二、明确学习任务

今天,我们要巧妙运用它们进行简便计算。

三、巧算一个数乘两位数

1、自学例4,说说12×25求的是什么?是怎么简便计算的?

2、议:方法一为什么要把12拆成3×4?用到了什么运算定律?

板书:25×4=100,乘法结合律

3、议:方法二把25看成了多少计算?为什么要÷4?

4、还有什么办法?能不能把12看成8+4计算?试一试。

5、同练(左)

6、议:这里为什么要把12拆成4+8?用到了什么运算定律?

板:25×8=,乘法分配律

7、议:还有哪些特征数可能也会碰到类似的情况?

板:125×8=1000

8、:进行简便计算需要根据数据的特点灵活选择方法,合理运用运算定律或运算性质。

四、应用性质

1、例4余下的两个问题。

2、P47-5

3、P47-6

五、

今天,你有什么收获?

数学上册五年级教案 篇十一

教学过程:

1.通过回顾与整理,对本单元所学内容进行梳理,进一步建立关于圆的认知结构。

2.通过练习与运用,进一步熟练运用圆的有关知识及相关的数学知识解决实际问题,提高运用所学知识解决问题的能力。

3.感受数学与生活的联系,进一步培养对数学的好奇心和兴趣。

教学重点:

对本单元所学内容进行梳理,进一步建立关于圆的认知结构。

教学难点:

运用圆的有关知识及相关的数学知识解决实际问题。

教学准备:

教学挂图。

教学过程:

一、回顾与整理

1.师:通过本单元的学习,你学会了哪些具体的知识?将你学到的圆的知识有条理地整理出来。

2.学生在小组中整理。

3.小组汇报,教师板书

(1)圆的基本特征。

(2)圆的周长计算。

(3)圆的面积计算。

(4)组合图形面积的计算。

4.根据整理的知识点,指名说说每个知识点具体的内容。

5.小结:学是为了用,我们对本单元所学知识进行整理,就是为了让大家更好地掌握所学知识,去解决生活中一些相关的问题。

二、练习与应用

1.完成练习与应用第1题。

(l)学生独立在本子上完成。

(2)说说画圆的步骤和需要注意的地方。

2.完成练习与应用第3题。

(1)学生独立完成。

(2)说说是怎 m.kuaihuida.com 快回答…样算的。

3.完成练习与应用第4题。

(1)学生独立计算。

(2)集体交流。

(3)追问:计算圆的周长与面积有什么不同的地方?

4.完成练习与应用第5题。

(1)理解题意。

(2)独立计算。

(3)集体交流。

(4)提问:生活中还有哪些类似的与圆有关的自然现象?

5.完成练习与应用第6题。

(1)理解题意。

(2)独立计算。

(3)集体交流。

6.完成练习与应用第7题。

(1)提问:要求“从小方家到学校大约有多少米”,首先要知道什么?根据题中的信息,怎样求有多少米呢?

(2)学生独立计算。

(3)集体交流,提问:计算中要注意什么?

7.作业:练习与应用第7~13题。

三、课堂小结

师:通过这节课的整理与复习,你有什么体会或感受?圆的有关知识在生活中的应用多不多?

先让学生说说自己的收获与感受,然后教师点评。

板书设计:

整理与练习

圆的基本特征

圆的周长计算

圆的面积计算

组合图形面积的计算

五年级上册数学教案 篇十二

教学目标:

知识技能目标: 知道字母能表示什么,能用字母表示出简单问题中的数量关系,通过生活实例,使学生初步感受到用字母表示数的作用和优点,数学教案-用字母表示数。

过程与方法目标:体会字母表示数的意义,形成初步的符号感;

情感与态度目标:在激发学生求知欲和好奇心、感受数学符号的简洁美的同时,体会到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。

本课重点:用字母表示数和简单的数量关系。

本节课的关键是让学生理解用含有字母的式子表示数量的意义,从中体会它的优越性,但由于学生是第一次接触没有具体数字的数量,因此把文字语言转化为符号语言是本节课的难点。

教学过程:

一、

师:同学们,我们来轻松一下好吗?(课件反复播放ABC英文歌曲。学生跟着唱)

师:刚才的唱的内容是什么?(英文字母歌)

师:谁能来说说我们生活中还有哪些地方用到字母? (生答)

师:是呀,字母在我们生活中有许多广泛的应用,刚才所说,在音乐简谱中它表示音高,在车牌号上可以表示一个地区……同样,在数学学习中也常常用字母来表示数量,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)

二、

1、师:瞧大屏幕,老师给大家带来了两个盒子,一个装着乒乓球,另一个装着羽毛球。又知道“羽毛球比乒乓球多3个”,问:你来猜猜看,盒子里的羽毛球和乒乓球各有几个?

(课件出示两个分别写着“羽毛球”和“乒乓球”的盒子再出示“已知羽毛球比乒乓球多3个”这个条件。)

(根据学生的回答在黑板上填表)

乒乓球个数

羽毛球个数

师:我们已经猜出了5种可能性,还有其他可能吗?(有)那我们用省略号来表示剩下的可能性,好吗?

师:如果我们刚才继续猜下去,这两种球的个数能猜得完吗?那可怎么办?谁能够想出一个简单的法子来表示呢?

生汇报,师板书。如:乒乓球:a 羽毛球:a+3

还可以怎样表示? 羽毛球:a 乒乓球: a-3

师:请同学们思考:a+3中,a 表示什么?a+3 表示哪一个量?

a-3 中,a 表示什么?a-3 表示哪一个量?

当a=3、8……时,羽毛球分别是几个?

师结合板书,小结:看来,除了用一个字母表示数量外,我们还可以

用什么方法来表示数量 (含有字母的式子)

2、 那咱们试试看,

一箱苹果重10千克,吃了a千克,现在还有多少千克?

一只足球35元,买x 只,应付多少元?

商店运到g台彩电,总价7200元,每台彩电多少元?

周二温度由26C下降tC后是几摄氏度?

3、用含有字母的式子表示数量关系

师:一个字母只能表示数量,而含有字母的式子不但能表示出数量,而且能表示出数量关系。

独立思考:如果我们用A表示乒乓球的个数,用下面的式子分别表示排球、足球、篮球的个数,你能看得出乒乓球个数与这几种球的个数之间有什么关系吗?

课件出示:A-5 6A A÷2

师小结:看来,含有字母的式子既可以表示数量,也可以表示出数量关系,的确作用很大。

三、尝试解题,自主归纳

1、师:我们就用刚刚学的本领,到超市里去逛逛吧!(课件出示超市情景,镜头特写一些物品的单价)

师:每位同学先一样自己最喜欢的食品。

(师下发购物单、生自主进行)

购物单

名 称

单 价

数 量

总 价(列式计算)

2、交流:

师:(可以投影一些同学的购物单)你买了什么?还有谁也买了()?看这些买()的情况,这些量中,什么变?什么没有变?你能买()的总价用一个式子来表示吗?

师:可以用你喜欢的来表示,小学数学教案《数学教案-用字母表示数》。(……)

师:那么,买()的购物单我们也用不着一张张地看了,谁能用一个算式反咱们全班买()的总价表示出来?表示什么意思?

(生可能会讲同一个字母)

师作补充:一般来讲,在同一个问题里,不同的量要用不同的字母来表示。

这些字母可以是哪些数呢?

一般情况下,我们可以用a、b、c、d……任何一个字母来表示数,但是在一些特殊情况下,某些特定的量常常用特定的字母来表示,如v用来表示速度,t表示时间,s表示路程,而在求面积时,s又用来表示面积。

四、 激发情感,升华新知

1、学到这里,你有什么收获?

2、大家的收获真不小!但如果能很快地解决下面的几个问题的话,陈老师相信大家一定会收获更大!

课件出示练习题:

(一)口答:(1)一辆公共汽车上有46名乘客,在西门站下去A名,

又上来B名,这时,汽车上有( )名乘客。

(2)A的5倍减去4.8的差表示为( )

(3)张师傅每天做A个零件,李师傅每天比张师傅多做8个,

李师傅5天共做()个零件。

(二)师:上星期,我们齐贤镇举行了小学生田径运动会,镇校五年级6个班

组成一支代表队,取得了优异的成绩。这支代表队参加比赛的人数是这样的:(出示课件)

师:从屏幕上你了解到了什么信息?想想看还能用含有字母的式子表示出其他相关的信息吗?可以小组合作完成,看哪组写得快,写得多。

(三)玩一个数青蛙的游戏,好吗?

(课件播放)1只蛤蟆1张嘴,2只眼睛4条腿,1声扑通跳下水;

2只蛤蟆2张嘴,4只眼睛8条腿,2声扑通跳下水;

3只蛤蟆3张嘴,6只眼睛12条腿,3声扑通跳下水;

……

师:你还能继续往下唱吗?能用咱们今天的知识解决它吗?

(n 只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水。

(四)挑战性问题。

师:最后,我们再看一个非常有趣的问题。这个问题,同学们课后解决。

在某地,人们发现蟋蟀叫的次数与温度有如下的近似关系:用蟋蟀1分钟收的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。

(1)用字母表示该地当时的温度;

(2)当蟋蟀1分钟叫的次数分别是84、105和140时,该地当时的温度约是多少?