1. 主页 > 知识大全 >

《正比例》教学设计(最新9篇)1-11-27

作为一位优秀的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。我们应该怎么写教案呢?下面是小编给大伙儿找到的9篇正比例教学设计的相关内容。

《正比例》优秀教案 篇一

教学内容:正比例的意义。

教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

教学重点:正比例的意义。

教学难点:正比例的判断。

教具准备:小黑板、投景影片

教学过程:

一、 复习

根据下面各题,先口答列式及得数,后说数量关系式。

1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?

2、 一种布,买3米共要27元,平均每米布多少元?

3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

师据学生回答板书如下:

路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率

二、引新

我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

三、新授

1、 教学例1。一列火车行驶的时间和所行的路程如下表。

时间(时) 1 2 3 4 5 6 7 8

路程(千米) 90 180 270 360 450 540 630 720

(1) 引导学生观察上表内数据。

(2) 边观察边思考下面问题:

(1) 表中有哪几种量?这两促量有没有关系?

(2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

(3) 引导学生分析这两种相关联的量的变化有什么规律?

(1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

90/1=90 360/4=90 540/6=90

(2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

(3)师:它们之间的关系可以用式子表示

路程/时间=速度(一定)

(4) 小结。

时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

2、 教学例2

(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

数量(米) 1 2 34 5 6 7

总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

(2)引导学生观察上表内的数据。

(3) 回答下面风个问题:

表中有哪两种量?这两种量有关系吗?为什么?

这两种量是怎样变化的?

它们的变化有什么规律?

相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

(4) 小结。

花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

3、 概括正比例的意义及关系式。

(1) 比较上面的例1和例2,它们有什么共同点?

(2) 判断成正比例量的方法:是什么?

(3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

(4) 概括关系式:

Y/X=K(一定)

4、 教学例3。

出示例3

师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

5、 小结。

判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

四、巩固练习

第13页做一做

五、 总结。

1、 什么叫成正比例的量?

2、 怎样判断两种量是成正比例的量?

六、 作业: 完成练习六第1-3题。

《正比例》优秀教案 篇二

1、成正比例的量

教学内容:成正比例的量

教学目标:

1.使学生理解正比例的意义,会正确判断成正比例的量。

2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:正比例的意义。

教学难点:正确判断两个量是否成正比例的关系。

教学过程:

一揭示课题

1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的此导下,学生会举出一些简单的例子,如:

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二探索新知

1.教学例1

(1)出示例题情境图。

问:你看到了什么?

生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素:

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

(4)想一想:

师:生活中还有哪些成正比例的量?

学生举例说明。如:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2.教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特往。

3.做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由:

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

4.课堂小结

说一说成正比例关系的量的变化特征。

三巩固练习

完成课文练习七第1~5题。

2、成反比例的量

教学内容:成反比例的量

教学目标:

1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

2.根据反比例的意义,正确判断两种量是否成反比例。

教学重点:反比例的意义。

教学难点:正确判断两种量是否成反比例。

教学过程:

一导入新课

1.让学生说一说成正比例的两种量的变化规律。

回答要点:

(1)两种相关联的量;

(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

(3)两个量的比值一定。

2.举例说明。

如:每袋大米质量相同,大米的。袋数与总质量成正比例。

理由:

(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

减少,大米的总质量也相应减少;

(3)总质量与袋数的比值一定。

所以,大米的袋数与总质量成正比例。

板书:

3.揭示课题。

今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

板书课题:成反比例的量[ 内 容 结 束 ]

正比例教学设计 篇三

教学要求:

使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

进一步提高解决简单实际问题的能力。

教学过程:

提出本课复习题

基本概念的复习

什么叫两种相关联的量?

下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

什么样的两种量成正比例关系?什么样的两种量成反比例关系?

成正比例关系的量与成反比例关系的量有什么异同点?

应用练习

完成教材97页的“做一做”。

第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

巩固练习

完成教材99页第6~7题。

全课总结(略)

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的'“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

正比例教学设计 篇四

教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

教学目标

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

教学重、难点重点:正确理解正比例、反比例的'意义,运用比例的基本性质判断两个比能否组成比例。

难点:运用比例的知识解决一些简单的实际问题。

课前准备课件。

教学流程设计意图

一、比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书第83页“练习与实践”。

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的联系

出示:a∶b=÷=(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。

(2)填空:

=÷=∶

(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教材第83页的“练习与实践”。

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第3题:解比例,做好后选两题验算一下。

四、完成教材第84页“练习与实践”。

(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第5题:

第一小题让学生独立得出:深色与浅色地砖铺地面积的

比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(3)完成第6题。

五、评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

对比和比例进行比较,强化理解,进一步优化知识结构。

复习解比例。

应用比例分配知识解决实际问题。

小学《正比例》的教学设计 篇五

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

小学《正比例》的教学设计 篇六

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

正比例教学设计 篇七

教学目标

1.使学生理解正比例的意义。

2.能根据正比例的意义判断两种量是不是成正比例。

3.培养学生的`抽象概括能力和分析判断能力。

教学重点

使学生理解正比例的意义。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表。

小学《正比例》的教学设计 篇八

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

小学《正比例》的教学设计 篇九

教学内容:

教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重难点:

理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

学情分析

1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

多媒体运用:

ppt课件

教学过程:

一、教学例1

1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

根据学生的回答,教师板书关系式:路程时间=速度(一定)

5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

二、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

三、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式。

四、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

五、全课小结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?