1. 主页 > 知识大全 >

《圆的面积》教学设计【优秀13篇】8-4-51

作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?本文是快回答可爱的小编给大伙儿收集整理的13篇圆的面积教学设计的相关内容,欢迎参考阅读。

《圆的面积》教学设计 篇一

【教学内容】

16页—18页圆的面积

【教学目标】

知识与技能:

(1)、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

(2)、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

过程与方法:

通过割补、拼组的方法探究圆面积的计算方法。

情感、态度与价值观:

在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

【教学重点】经历圆面积计算公式的推导过程,掌握圆面积计算公式。

【教学难点】理解圆面积计算公式的推导过程,能运用圆面积的知识解决一些简单实际的问题。

【教具准备】PPT课件,圆公式推导演示器。

【学具准备】等分好的圆形纸片。

【教学时间】一课时。

【教学过程】

一、基本训练。

1、复习圆的有关知识。

2、复习圆周长的计算公式。

二、问题情境。

课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?

学生观察并讨论,然后指名回答。

预设1:我能发现羊能吃到草一周所走过的地方刚好是一个圆形。

预设2:这个圆形的半径就是绳子的距离,也就是5米。

预设3:这个圆形的中心就是木桩所在的地方。

师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

羊能吃到草的最大范围就是这个圆形的面积。

师:说得很好,今天这节课我们就来学习如何羊能吃到草的最大范围的面积有多大,也就是怎样求圆的面积呢?(板书:圆的面积)

三、建立模型。

1、认识圆的面积

师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

出示结语:圆所占平面的大小叫做圆的面积

[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]

2、估算圆的面积

(1)、投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

(2)、指明反馈估算结果,并说明估算方法及依据。

①、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;

②、我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

[设计意图:巧设估算圆的面积这个环节,使学生对圆面积与r的倍数关系,获得十分鲜明的表象,让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]

3、积极动脑,讨论推导方法。

回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?——引导转化

[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]

4、小组合作,推导公式

师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。

(1)、操作感知。

操作活动一:

让学生以小组为单位将严格圆形纸片分成8等份,将每份剪下后再进行拼接。(图见课件)

问题:拼成后像什么图像?

②、操作活动二:

让学生以小组为单位将严格圆形纸片分成16等份、32等份。将每份剪下后再进行拼接。(图见课件)

(2)、讨论、交流。

通过剪拼,你发现了什么?

(3)、推导圆的面积计算公式。

学生讨论并回答:(课件演示推导过程)

5、应用圆的面积公式解决问题。(解决情景图中的问题)

[设计意图:通过小组合作、探究学习等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,使学生明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]

四、解释应用

1、口答:(出示课件:)

2、计算下面圆的面积。(出示课件)

3、列式计算。

(1)半径2米的圆的面积是多少平方米?

(2)直径2米的圆的面积是多少平方米?

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、回顾小结。

本节课,你学会了什么?你是用什么方法探索圆的面积的计算公式的?怎样求圆的面积?

作业布置和板书设计(略)

《圆的面积》教学设计 篇二

一、内容简介及设计理念

本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

二、教学目标:

1.经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

2.能正确运用圆的面积计算公式计算圆的面积。

3.在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

三、教学重点和难点:

圆的面积计算公式的推导。

四、教学准备:

圆形纸片、剪刀、多媒体课件等。

五、教学过程:

教学过程教师活动学生活动

一、谈话引入,揭示课题

二、探究新知。

1、第一次探究,明确思路,体会“转化”的数学思想方法

2、第二次探究,明确方法,体验“极限思想”

3、第三次探究,深化思维,推导公式。

4、解决问题

5、小结

三、知识应用(出示一个圆)大家看,这是什么图形?

师:你已经掌握圆的哪些知识?

师:关于圆你还想探讨什么?

(板书课题:圆的面积。)

师:谁能摸一摸这个圆片的面积。

师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

师:噢,你想把圆转化成我们学过的三角形来求它的面积。

师:谁还有不同的方法?

师:这像我们学过的什么图形?

师:你想把圆转化成平行四边形来求它的面积,是不是?

师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。

师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

师:为什么要折这么多份?

师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

师:你发现了什么?

师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

师:能让拼成的图形更接近平行四边形吗?

师:哪个小组分的份数更多?

(教师让另一组展示自己平均分成16份后拼成的图形。)

师:和前两次拼成的图形比,又有什么变化?

师:如果要让拼成的图形比它还接近平行四边形,怎么办?

师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

师:把这圆平均分了64份,看拼成新的图形呢?

圆的面积教学设计 篇三

教学内容:

义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。

教学内容分析:

当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(2011版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。

圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积☆www.kaoyantv.com☆极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。

教学对象分析:

该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。

1、学生的知识基础

该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。

2、对学习该内容的困惑与迷思

学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。

教学目标:

本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。

1、教学的认知目标

让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

2、教学方法目标

让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

3、情感目标

让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

教学重点难点:

重点:圆的面积计算公式的推导和应用。

难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

教学准备:

PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀

教学过程:

一、从旧知到新知,引入新课

根据人教版数学教材中的实例,开展新课堂。

1、课前回忆圆周长的计算公式

(1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?

(2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?

2、明确圆的面积的相关定义:

学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的裁剪。老师:这是两个一样的圆吗?他们一样大吗?

学生:不一样大,一个大、一个小。

老师:你们是怎么判断的呢?

学生A:用眼睛看,它们明显不一样大小。

学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。

老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。

学习过程2:理清“圆的周长”和“圆的面积”之间的区别

老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的面积是指某个圆占平面的大小。

二、巧用游戏化形式,辅助学生理解

学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。

学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。

三、教师引领,带领学生一起推导圆面积公式

学习过程1:探索拼接成的长方形和圆之间的关系。

首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)

圆的半径≈长方形的宽

学习过程2:寻求其他推导方法

开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。

四、实战练习,提高解题效率

自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:

计算下列圆的面积和周长(1)已知某圆r=3cm,求S和C(2)已知r=5cm,求S和C

《圆的面积》教学设计 篇四

课题:

“圆的面积”教学设计

教学内容:

义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。

教学内容分析:

当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(20xx版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。

圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。

教学对象分析:

该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。

1、学生的知识基础

该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。

2、对学习该内容的困惑与迷思

学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。

教学目标:

本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。

1、教学的认知目标

让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

2、教学方法目标

让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

3、情感目标

让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

教学重点难点:

重点:圆的面积计算公式的推导和应用。

难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

教学准备:

PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀

教学的基本思路(或流程)

教学过程:

一、从旧知到新知,引入新课

根据人教版数学教材中的实例,开展新课堂。

1、课前回忆圆周长的计算公式

(1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?

(2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?

2、明确圆的面积的相关定义:

学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的`裁剪。老师:这是两个一样的圆吗?他们一样大吗?

学生:不一样大,一个大、一个小。

老师:你们是怎么判断的呢?

学生A:用眼睛看,它们明显不一样大小。

学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。

老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。

学习过程2:理清“圆的周长”和“圆的面积”之间的区别

老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的面积是指某个圆占平面的大小。

二、巧用游戏化形式,辅助学生理解

学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。

学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。

三、教师引领,带领学生一起推导圆面积公式

学习过程1:探索拼接成的长方形和圆之间的关系。

首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)

圆的半径≈长方形的宽

学习过程2:寻求其他推导方法

开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。

四、实战练习,提高解题效率

自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:

计算下列圆的面积和周长

(1)已知某圆r=3cm,求S和C

(2)已知r=5cm,求S和C

《圆的面积》教学设计 篇五

教学内容: 圆的面积 教学目标:

1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

2、理解圆的面积公式的推导过程,感受转化的数学思想。

3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

教学重难点:

重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:

一、谈话引入

明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)

导入课题:圆的面积

二、引导探究

1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?

(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?

(2)猜测圆的面积与半径有什么关系?

正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……

2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。

A、长方形、正方形,直接用面积单位去量,找规律得到的;

B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。

(2)统一认识,寻求转化的方法

A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;

B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。

(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形

同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。

长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)

长方形的面积 = 长 × 宽

圆的面积 = 圆周长一半( r)×半径(r)

S = π r2 B、拼成近似的三角形

三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2

B、圆的面积与什么有关?回到课始的猜测。

三、总结

本节课你有什么收获?

四、实践

1、已知r=4cm,求S。

2、已知d=8cm,求S。

板书设计:

圆的面积

圆所占平面的大小叫圆的面积。

长方形的面积 = 长 × 宽

圆的面积 = πr × r = πr2

《 圆的面积》教学反思

济渎路 翟彩艳

圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

一、感受圆的周长与面积的不同

本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

二、学具演示,激发探究

通过以前推导平行四边形面积计算的方法,探究圆的。面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

三、分层练习,体验运用价值

结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地

参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教案 篇六

教学目的:

通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

重点:

圆面积计算公式。

难点:

圆面积计算公式的推导。

教具、学具:

圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

教学过程:

一、复习。

1.口算:

2.已知圆的半径是2.5分米,它的周长是多少?

3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

4.说出平行四边形的面积公式是怎样推导出来的?

我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

二、新授。

1.圆的面积的含义。

问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

向学生说明:如果分的等份越多所拼的图形就越接近长方形。

教师边提问边完成圆面积公式的推导:

拼成的图形近似于什么图形?

原来圆的面积与这个长方形的。面积是否相等?

长方形的长相当于圆的哪部分的长?

长方形的宽是圆的哪部分?

长方形的面积=长×宽

圆的面积 = ×

= ×

= ×

=

用S表示圆的面积,那么圆的面积可以写成:

3.圆面积公式的应用。

出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

=3.14×

=3.14×16

=50.24(平方厘米)

答:它的面积是50.24平方厘米。

三、巩固练习。

1.根据下面所给的条件,求圆的面积。

半径2分米。

直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

2.练习二十七的第1~4题。

强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

四、作业。

练习二十七第5、6题。

《圆的面积》教学设计 篇七

教学内容:

义务教育课程标准实验教科书六年级上册P67-68。

教学目标:

1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:

掌握圆的面积计算公式,能够正确地计算圆的面积。

教学难点:

理解圆的面积计算公式的推导。

教学过程:

一、回忆旧知、揭示课题

1、谈话引入

前些日子我们已经研究了圆,今天咱们继续研究圆。

2、画圆

首先请同学们拿出你们的圆规在练习本上画一个圆。

3、比较圆的大小

请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

4、揭示课题

我们把圆所占平面的大小叫做圆的面积。(出示课题)

二、动手操作,探索新知

1、确定策略,体会转化

(1)明确研究问题

师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

(2)体会转化

怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)

其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?

预设:

学生回忆平行四边形、三角形、梯形的面积推导方法。

当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

小结:

你们有没有发现这些方法都有一个共同点?

(3)确定策略

那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?

如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?

①引导学生说出沿着直径或半径,把圆进行平均分;

②师示范4等份、8等份的剪法和拼法;

2、明确方法,体验极限

(1)学生动手操作16等份的拼法;

(2)比较每一次所拼图形的变化;

(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

3、深化思维,推导公式

(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

(2)交流发现,电脑演示圆周长和长,半径和宽的关系。

(3)多让几个学生交流转化后的长方形和原来圆之间的联系。

(4)根据长方形的面积公式推导圆的面积计算公式。

三、运用公式,解决问题

1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

2、判断对错:

(1)直径是2厘米的圆,它的面积是12.56平方厘米。

(2)两个圆的周长相等,面积也一定相等。

(3)圆的半径越大,圆所占的面积也越大。

(4)圆的半径扩大3倍,它的面积扩大6倍。

3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

四、总结新知,深化拓展

1.小结:

通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

2、拓展

在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

《圆面积》教学设计 篇八

教学内容

课本第143页例2;练一练第1~6题。

教材分析

这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。

学情分析

本班学生计算能力还可以,就是对应用题有一种害怕心理。

教学目标

1、进一步掌握圆面积公式,并能正确地计算圆面积。

2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

教学重点

会熟练运用公式求圆面积。

教学难点

求出需要的条件,即圆的半径。

教学准备

作业纸、课件。

教学过程

一、复习。

课件出示:

(一)求下列各题中圆的半径。

(1)C=6、28分米,r=?;(2)d=30厘米,r=?

(3)C=15、7分米,r=?;(4)d=18、84厘米,r=?

(二)、求下列各圆的`面积。

(1)r=2分米,S=?(2)d=6米,S=?

(3)r=10厘米,S=?(4)d=3分米,S=?

只要求学生进行口头表述计算公式(不求计算结果)

二、学生活动:

要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

运用学生事先准备的工具(细绳、直尺等)

三、汇报交流

小组把作业纸上交,交流心得

四、巩固练习

练一练第1~6题。

《作业本》p73。

《圆的面积》教学设计 篇九

一、教材内容分析

人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。

二、学情分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。

三、教学目标知识与技能

1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

过程与方法

1,引导学生经过“感知——动脑——观察——合作探究”等系列活动。逐步培养学生的抽象思维能力。

2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。

情感态度与价值观

让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣:数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、注重实践操作,有意识地培养学生获取知识的能力:学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、注重学法指导,有意识地引导学生应用转化的方法:本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、注重教具和学具的应用,有意识地突破学生学习知识的`难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。

五、教学准备

教学用具,圆形卡片学具

六、教学过程

关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流

一、创设情境,揭示课题

1,创设情境

学校的花坛的半径为10米,我们能求出它的面积吗?

2,揭示课题

为了解决这个问题这节课我们一起学习“圆的面积”好不好?

板书:圆的面积

3,说一说

师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?

生答:

师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。

二、动手操作,实践探究

1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法

2、动手操作,尝试转化

1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?

2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导

3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)

4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?

3、探究联系,推导公式

现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?

1),猜测,再一次观察老师的示范

2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品

3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。

4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。

5),观察,小组讨论得出公式:(板书)

长方形的面积 = 长 × 宽

圆的面积 = 周长的一半 × 半径

S =πr ×r = πr2

三、运用公式,解决问题

1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识

2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正。学生独立运用所学知识解答,加深对概念的理解,全班汇报交流。运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。

四、课堂小结

(一)组织交流

回顾一下这节课我们学习的内容。

(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(二)总结

平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!

七,板书设计

圆的面积

(1)长方形的积 = 长 × 宽

圆的面积 = 周长的一半×半径

S = πr×r = πr2

八、教学评价设计

在本节课的教学中,我在教学评价这一环节力争做到:

(一)在探究新知的过程中注重对学生数学学习过程的评价;

(二)在复习旧知识时恰当评价学生的基础知识和基本技能;

(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。

《圆的面积》教学设计 篇十

教学内容:人教版六数上第66页、67页

教学目标:

1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

2.经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

3.培养学生合作探究的意思,感悟数学知识的内在联系。教学重点、难点:1.理解圆面积公式的推导过程。

2.会正确计算圆的面积。

教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

教学过程:

(课前游戏)

猜谜:前面有一片草地(打一植物)

草地上来了一群羊(打一水果)

草地上有一群羊,突然来了一群狼(打一水果)

师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

一、导入:

师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

二、认识圆的面积:

1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

师:圆表面的大小就叫做圆的面积。

2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

生:一个圆面积大,一个圆面积小。

师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。

生:半径或者直径越长,圆的面积就越大。

师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

三、观察与尝试猜测:

1.(出示正方形与圆的课件)

师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多少呢?

生:大正方形的面积是4r,小正方形的面积是2r。

2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

生:圆的面积比大正方形的面积小,比小正方形的面积大。

师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

生:3r。

师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

四、小组合作、拼摆。

1.师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

生:底*高。S=ah。

师:还记得平行四边形的面积计算公式是如何推导出来的吗?

是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢?生:三角形和梯形转化成平行四边形再推导的。

师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢?

2.师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

生:三角形或者等腰三角形。

师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

学生开始小组合作。

3.汇报合作结果。

师:你们都拼成了什么样的图形?上台来展示一下吧。

生分组上台展示。

要求学生汇报自己是怎样拼的,拼成了一个什么图形。

师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

生:分得越多,越接近长方形。

五、面积计算公式推导:

1.师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

2.师:找到答案了吗?

生:长是πr,宽是r。

师:长方形的面积呢?请同学们在练习本上写一写。

那圆的面积呢?也写一写,读一读吧。

学生汇报。师板书。

3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

生:半径。

师:知道什么也可以求出圆的面积呢?

生:直径、周长。

师:下面我们就来试一试吧!

六、巩固练习。

1.平方的口算练习。

123456789102030222222222222

2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

3.圆形花坛的直径是20米,求圆形花坛的占地面积。

学生先汇报思路,再在练习本上完成。

4.树干的周长是125.6米,求树干的横截面积是多少?

学生先汇报思路,再在练习本上完成。

七、总结:

师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

《圆的面积》教学设计 篇十一

一、教学内容:

《圆的面积》

二、教材分析

圆的面积是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。而圆这样的曲边图形的面积计算,学生还是第一次接触到,如果学生完全自主地探索如何把圆转化成长方形或其他平面图形是有很大难度的,所以教材首先出示了估算图,再让学生利用学具进行操作,让学生自主发现圆的面积与拼成的长方形的面积的关系,推导出圆的面积计算公式。所以本课的教学活动将化曲为直和极限的数学思想纳入到学生原有的认知结构之中,从而完成新知的构建。

三、学情分析

学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。

四、教学目标

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

3、在估一估和探究面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

五、教学重难点

教学重点:圆面积计算公式的推导和应用

教学难点:理解把圆转化为平行四边形,长方形推导出圆的面积的计算公式的过程。

六、教具准备:多媒体课件,等分好的圆形纸片。

七、教学流程

(一)创设情境,激发兴趣。

师:红岸公园为了减轻工人们的负担,在公园的草坪上安装了许多个自动喷水头,它喷射的距离为5米,喷水头转动一周是什么图形?

(生回答:圆形)

师:喷水头转动一周可以浇灌多大的面积呢?(课件演示喷射的过程)

这个面积就是谁的面积?(圆的面积)

(板书:定义:我们把圆所占平面的大小叫做圆的面积)

同学们会求圆的面积吗?这节课我们就来研究这个问题。 (板书:圆的面积)

[设计意图:创设问题情境让学生在生活中发现问题,激发学生探究新知的兴趣、欲望,从而主动自觉地学习新知]

(二)尝试估算、探究思考。

师:这个圆的面积到底有多大呢?我们先来估算一下这个圆的面积。

(课件出示16页图,将这个圆置于边长是10米×10米的正方形中)请同学们仔细观察,先试着估算一下这个圆的面积。

学生独立思考,师巡视。

学生交流估算的方法:

1。利用正方形的面积估算,大的正方形的面积是100平方米,小正方形的面积是50平方米,圆的面积在大正方形和小正方形的面积之间,即50平方米<圆的面积<100平方米。

2、利用数格子的方法估算,先数出 四分之一个圆的面积约是20平方米,整个圆的面积约是80平方米。

我们估计了半天,也没有得到精确的数值,那么,它一定有一个具体的计算方法,就像圆的周长= dπ 或2π r一样,我们继续往下探究。

[设计意图:让学生通过独立思考,初步尝试解决的方法,为后面的深入探究作好辅垫]

(三)合作交流,探索规律

1、由旧知引入。

师:同学们还记得我们在学平行四边形、梯形面积时是怎样推导公式的吗?我们利用的就是把新的图形经过分割、拼合等方法转化成我们所熟悉的图形。那么,我们能否也用同样的方法推出圆面积的计算公式。

[设计意图:让学生回忆旧知,引导学生利用旧知类比迁移。为学生打开思路,找到了继续往下探究的方向,对由直线图形过度到曲线图形有了初步的感知。]

2、探究公式

(1)学生操作:

师:请大家拿出圆片,把它等分成8份,再分成16份,然后和组内成员剪一剪、拼一拼,看看能拼成什么图形。思考:拼成的图形和圆形有什么关系?

学生操作,教师巡视。

(2)学生汇报:可拼成平行四边形、长方形、梯形。(3)以长方形和平行四边形为例:师一边倾听一边课件演示拼的过程。

(4)操作思考:

学生接着剪拼32等分的圆形,边拼边观察和16等分的圆拼成的图形进行比较,你发现了什么?(

(课件演示拼的过程,再现等分16份的圆拼成的图形)

(5)如果把圆等分为64份,128份……大家想拼成的图形会怎么样?

(生:分的分数越多拼成的图形越接近长方形)

(6)观察思考:请同学们看大屏幕,接成的近似长方形的长和宽和圆的哪部分相等。

(学生观察、思考,小组交流一下。)

生:长方形的长相当于圆周长的一半(π r),长方形的宽相当于圆的半径(r)。

师:长方形的面积公式为s=长×宽,那么圆的面积公式应怎样写?

生:s=长×宽

= π r×r= π r2

师:π r2 中r2表示r×r即2个r相乘。

师:我们终于找到了圆的面积和半径的关系。

[设计意图:教师放手让学生自己拼剪,为学生提供了解决问题的方法和途径,并面向全体学生,促进不同层次的学生在原有水平上得到不同程度的发展与提高,培养了学生的空间想象力。]

四、巩固强化,应用拓展。

1、计算喷水头转动一周浇灌的面积是多少?

(学生利用公式进行计算,师巡视)(强调估算的作用)

2.已知圆的直径0.2分米,求圆的面积。

3.北京天坛公园的回音壁是闻名世界的声学奇迹,它是一道圆形围墙。圆的直径为65.2米,周长与面积分别是多少?

4.有一圆形蓄水池。它的周长约是31.4米,它的占地面积约是多少?

5.教材19页第5题。

[设计意图:让学生灵活掌握圆的面积教师大胆放手,让学生独立解答,经过尝试,他的观察力,动手操作能力想象力都会得到进一步的发展。]

五、总结收获,激励结束(略)

《圆的面积》教学设计 篇十二

教学目标:

1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

教学重难点:

圆面积公式的推导。

教学关键:

弄清圆与转化后的近似图形之间的关系。

教具:

多媒体计算机。

学具:

每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

教学过程:

一、复习旧知、设疑导入

同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

二、动手操作、探索新知

1、通过度量,猜想圆面积的大小。

用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

初步猜想:圆的面积相当于r2的3倍多一些。

3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

3、学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

三、看书质疑、自学例3,注意书写格式和运算顺序

四、运用新知,解决问题

1、一个圆的半径是5厘米,它的面积是多少平方厘米?

2、看图计算圆的面积。

3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据S=πr2求出面积。

(2)可测圆的直径,根据S=π(d/2)2求出面积。

(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

五、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

六、布置作业

七、板书设计

圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径

S=πr×r;S=πr2

《圆的面积》教学设计 篇十三

圆的面积教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。 ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。 ⒊渗透转化的数学思想。教学重点:圆面积的含义。圆面积的推导过程。教学难点:圆面积的推导过程。教学过程:一、复习。1、已知r,周长的一半怎样求? 2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这些图形的面积计算公式。 s=ab s=a2 s= ah s= ah s= (a+b)h二、新课。1、什么是圆的面积?(出示纸片圆让生摸一摸) 圆所占平面大小叫做圆的面积。2、推导圆的面积公式。(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?若分的分数越多,这个图形越接近长方形。(1)找:找出拼出的图形与圆的周长和半径有什么关系?圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径

s = πr × r s圆 = πr×r = πr2 3、你还能用其他方法推算出圆的面积公式吗?(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积 是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。因为:三角形面积= ×底×高 162π圆面积= × = × ·r×r =πr2(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,因为:平行四边形面积=底×高162π 圆面积 = ×r÷ = ×r×8 =πr2还可以取3份、4份等,同学们可以一一推算。三、运用知识解决实际问题。1、例1 一个圆的直径是20m,它的面积是多少平方米?已知:d=20厘米 求:s=? r=d÷2 20÷2=10(m)s=лr2 3.14×102 =3.14×100 =314(平方厘米)2、根据下面所给的条件,求圆的面积。r=5cm d =0.8dm 3、解答下列各题。(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?四、作业。 课本p70第1、5题。