1. 主页 > 知识大全 >

人教版数学上册教案(13篇)(小学5年级数学上册教案人教版)

作为一名辛苦耕耘的教育工作者,就有可能用到教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?为了帮助大家更好的写作人教版数学上册教案,快回答整理分享了13篇人教版数学上册教案。

新人教版数学上册教案 篇一

位置与坐标

1、确定位置

在平面内,确定物体的位置一般需要两个数据。

2、平面直角坐标系及有关概念

①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。。

④不同位置的点的坐标的特征

a、各象限内点的坐标的特征

点P(x,y)在第一象限→x>0,y>0

点P(x,y)在第二象限→x<0,y>0

点P(x,y)在第三象限→x<0,y<0

点P(x,y)在第四象限→x>0,y<0

b、坐标轴上的点的特征

点P(x,y)在x轴上→y=0,x为任意实数

点P(x,y)在y轴上→x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→x,y同时为零,即点P坐标为(0,0)即原点

c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上→x与y相等

点P(x,y)在第二、四象限夹角平分线上→x与y互为相反数

d、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于∣y∣

点P(x,y)到y轴的距离等于∣x∣

点P(x,y)到原点的距离等于√x2+y2

新人教版数学上册教案 篇二

实数

1、实数的概念及分类

①实数的分类

②无理数

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

开方开不尽的数,如√7,√3,√2等;

有特定意义的数,如圆周率π,或化简后含有π的数,如π/+8等;有特定结构的数,如0.1010010001…等;

某些三角函数值,如sin60°等2、实数的倒数、相反数和绝对值

①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算

3、平方根、算数平方根和立方根

①算术平方根

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

②平方根

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。注意√a的双重非负性:√a≥0;a≥0③立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。

表示方法:记作3√a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:-3√a=3√-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数

a-b>0a>b;

a-b=0a=b;

a-b<0a

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a

平方法:设a、b是两负实数,则a2>b2a

5、算术平方根有关计算(二次根式)

①含有二次根号“√”;被开方数a必须是非负数。

②性质:

③运算结果若含有“√”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式

6、实数的运算

①六种运算:加、减、乘、除、乘方、开方。

②实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

③运算律

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(ab)c=a(bc)

乘法对加法的分配律a(b+c)=ab+ac

新人教版数学上册教案 篇三

1.多边形的分类:

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1.L2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3.多边形的内角和公式:(n-2).180°;多边形的外角和都等于。

4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

人教版七年级数学上册教案 篇四

教学目标 1,掌握绝对值的概念,有理数大小比较法则。

2,学会绝对值的计算,会比较两个或多个有理数的大小。

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负

数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体

验数学知识与生活实际的联系。

因为绝对值概念的几何意义是数形转化的典型

模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对

有什么规律?、

-3,5,0,+58,0.6

要求小组讨论,合作学习。

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习。

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。 求一个数的绝时值的法则,可看做是绝对值概

念的一个应用,所以安排此例。

学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。

要求学生在头脑中有清晰的图形。 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

课堂练习例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。②教材中数的绝对值概念是根据几何意

义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,

学生不易接受。

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学

中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型。为此设置了想象练习。

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

课题: 1.3.1 有理数的加法(一)

教学目标 1,在现实背景中理解有理数加法的意义。

2,经历探索有理数加法法则的过程,理解有理数的加法法则。

3,能积极地参与探究有理数加法法

则的活动,并学会与他人交流合作。

4,能较为熟练地进行有理数的加法

运算,并能解决简单的实际间题。

5,在教学中适当渗透分类讨论思想

教学难点 异号两数相加

知识重点 和的符号的确定

教学过程(师生活动) 设计理念

设置情境

引入课题 回顾用正负数表示数量的实际例子;

在足球比赛中,如果把进球数记为正数,失球数记

为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

师:如何进行类似的有理数的加法运算呢?这就是

我们这节课一起与大家探讨的问题。

(出示课题)

让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要

性,激发学生探究新知的兴趣。

分析问题

探究新知 如果是球队在某场比赛中上半场失了两个球,下

半场失了3个球,那么它的得胜球是几个呢?算式应该

怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

(学生思考回答)

思考:请同学们想想,这支球队在这场比赛中还可

能出现其他的什么情况?你能列出算式吗?与同伴交流。

学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

2,借助数轴来讨论有理数的加法。I

一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.

(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

(4)在学生归纳的基础上,教师出示有理数加法法则。

有理数加法法则:

1,同号两数相加,取相同的符号,并把绝对值相加。

2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

3,一个数同。相加,仍得这个数。 再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在

此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(-),0+(+),0+(一).

,但不能把它归的为同号异

号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

①假设原点0为第一次运动起点,第二次运动

的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。

③让学生感受“数学模型”

的思想。④学会与同伴交

流,并在交流中获益。培养学生的语言表达

能力和归纳能力,也许学

生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现

的规律

解决问题 解决问题

例1计算:

(1)(-3)+(-9); (2)(-5)+13;

(3)0十(-7); (4)(-4.7)+3.9.

教师板演,让学生说出每一步运算所依据的法则。

请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

学生活动:请学生说一说在生活中用到有理数加法的例子。 注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

拓宽学生视野,让学

生体会到数学与生活的密切联系。

课堂练习教科书第23页练习

小结与作业

课堂小结 通过这节课的学习,你有哪些收获,学生自己总结。

本课作业 必做题:阅读教科书第20~22页,教科书第31习题1.3第1、12、第13题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

别人的意见和建议。

小学上册数学教案 篇五

教学目的:

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

教学重、难点:

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)引导学生总结分数乘整数的计算法则。

教学过程:

(一)铺垫孕伏

1、出示复习题。(投影片)

(1)整数乘法的意义是什么?

(2)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(3)计算:

计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2、引出课题。

分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

(二)探究新知。

1、教学分数乘整数的意义。

出示例1,指名读题。

(1)分析演示:

师:每人吃块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)

(2)观察引导:

这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。

(3)比较和12×5两种算式异同:

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:

相同点:两个算式表示的意义相同。

不同点:是分数乘整数,12×5是整数乘整数。

(4)概括总结:

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2、教学分数乘以整数的计算法则。

(1)推导算理:

由分数乘整数的意义导入。

问:表示什么意义?引导学生说出表示求3个的和。

板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)

观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。

(3)概括总结:

请根据观察结果总结的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。

(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

3、反馈练习:

(1)看图写算式:做一做、练习一第1题。

订正时让学生说出乘法中被乘数、乘数各表示什么?

(2)口答列算式:

3个是多少?5个是多少?

订正时让学生说一说为什么这样列式。

(3)计算:

先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

(三)全课小结。

这节课我们学习了什么?引导学生回顾总结。

(四)作业。

练习一5、6题。

四年级人教版数学上册教案 篇六

教学目标

1、结合具体情境初步认识分数,知道把一个物体或图形平均分成若干份,其中的一份可以用分数来表示,并理解只有“平均分”才能产生分数。

2、正确认识和读、写几分之一的分数,知道分数各部分名称。

3、能用实际操作的结果表示相应的分数。

4、会直观比较简单分数的大小比较。

教学重难点

重点:正确认识几分之一的分数。

难点:知道平均分才能用分数表示,会直观比较简单分数的大小。

教学准备

多媒体课件,学生每人准备同样大小的圆形纸、长方形纸,绳子,水彩笔。

教学过程设计

教学内容

师生活动

备注

一、情景导入

二、研究二分之一

三、导入其它的几分之一

四、练习

五、比较大小

六、拓展

1、(课件动画展示)星期天,小红和小明去郊外野餐,看看他们准备了什么好吃的?(课件出示4个苹果、2瓶矿泉水、1个蛋糕)如果你是他俩,你打算怎么分这些食品呢?(结合学生口答,老师出示:2个苹果

1瓶矿泉水

半个蛋糕)

这三个结果中哪个结果比较特别?

“半个”你能用一个数来表示吗?

今天,我们就来研究像这样的数,它们有一个好听的名字叫分数。(板书:分数)

1、那么什么是分数呢?

(边说边课件动画演示切蛋糕)把一个蛋糕,平均分成2份,这一份就是它的(老师指着左半个蛋糕,在蛋糕上出示分数)。老师指着另一半蛋糕问:那这一份呢?(学生回答后,动画出示分数)也就是每份是它的。就是分数。

说说是怎么得来的?(指名说,老师小结,并课件出示文字,再互相说说,并结合口答板书)

2、在我们桌上有一些纸片和绳子,你能找到它们的吗?

你是怎么得到的?

归纳:不管怎样,只要把一样物体平均分成2份分,每份就是它的。

3、刚才小朋友们找到了,在这些图形中,哪些图形的涂色部分能用来表示。

最后一个图形的涂色部分你觉得是几分之一?你怎么想的?

你觉得还可有哪些分数?(指名学生口答并板书出分数)

今天所学的分数有共同的地方,谁发现了?小组里讨论。(指名说)

1表示什么?横线下的数又表示什么呢?

像、、......这些分数都是由哪几部分组成的,请大家自学P100。

交流,结合回答板书:......分子

......分数线

......分母

我们认识了分数,那下面的图形你能用分数表示吗?(书本P101第1题)

最后一幅变为

同样涂色部分,为什么分数变了?

1、刚才我们折出了圆的,你还能折出圆形纸的几分之一?

和你的同桌折的要不一样,并把一份涂上颜色,说说你是是折的。

2、同桌比较涂色部分谁大谁小?分数谁大谁小?

(师选二分之一和十六分之一比)

3、看这张圆形纸(师出示八分之一),你认为贴在哪里好?为什么?

4、(师选四分之一,不给学生看到)四分之一你认为放在哪里好?为什么?

拿出圆形纸,验证。

(课件)唐僧师徒四人西天取经途中吃吃西瓜的故事,思考:四分之一与六分之一到底谁吃的更多?

最新人教版三年级数学上册教案

人教版数学四年级上册教案 篇七

设计理念:

新课程标准指出:要注重学生经历观察、操作、推理、想象等探索过程中形成的能力,使学生在理解知识的发生过程中,主动建构自己的知识体系。针对本节课题学习内容的现实性,我是这样设计的。

1. 国庆60周年情境引入,通过分类感受精确数和近似数。“分类思想”是贯穿义务教育阶段的重要思想。我通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又是通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。

2. 借助数线,直观感受“四舍五入”法求近似数的道理。首先,结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,建立直观表象。然后丰富拓展,归纳1万多的近似数在什么情况下是1万,在什么情况下是2万。理解“四舍”和“五入”规定的合理性,了解“四舍五入”法的道理。

3. 合作学习,探究“四舍五入”法求一个数的近似数。这部分是教学的难点,分为两个层次。一是同桌合作学习:在本环节中,直接选择一个大一点的六位数,既尊重学生的知识基础,加深了数学理解,又在同桌合作突破难点的同时,发展学生的思维,培养了合作学习的能力。二是集体学习:探究把233482“四舍五入”到不同数位的近似数,归纳推理得出用“四舍五入”法求近似数的方法。

4. 练习巩固,个性化讲解促进个别化指导。从数的分类和求近似数两个方面进行练习巩固,并通过个别指导,生生交流、师生交流,帮助学生解决出现的问题,逐步清晰所学知识,最终形成技能,促进不同学生得到不同的发展。

教材分析:

“近似数”是北师大版小学数学第七册第一单元“认识更大的数”中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法“试商”的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。

学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用“四舍五入”法来求大数的近似数。但是大部分学生对“四舍五入”法只是一个模糊的认识,对于“四舍五入”法具体是什么,它的道理是什么,什么情况下运用“四舍五入”法都不是十分清楚。

四年级的学生已经进入了小学中年级段,具有一定的学习经验和合作学习的能力。

教学目标:

1. 通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。

2. 借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。

3. 经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。

教学重点:

经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。

教学难点:

经历探索求近似数的过程。

教学方法:

合作学习法 分析归纳法

教学策略:

小组合作 情境创设

教学过程:

一、情境创设,分类感受精确数和近似数。

1.观看一段国庆60周年阅兵视频,说一说有什么感受?

师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。

2. 课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。

3. 仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?

组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。

师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?

学生用自己的语言说一说。可能会说是准确的数,估出来的数。

师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。

4. 读一读以下的数据,哪些是精确数,哪些是近似数吗?

小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。

5. 你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。

师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。

【设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】

二、合作学习,自主探究。

(一)借助数线,直观感受“四舍五入”法求近似数的道理。

1.师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称“近2万平方米”,这里的“2万”是如何得到的?

同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。

2.结合直观的数线图,分析“18000平方米”称为“近2万平方米”的原因。

师:18000介于整万数1万和2万之间,由于18000千位上是“8”,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数“2万”。

介绍18000约等于2万,用“≈”表示,写作:18000≈2万全班读一读。

3.在数线上标出11000,1,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。

师:15000这个数约等于多少呢?

学生可能觉得1万可以,2万也可以,因外它刚好在中间。

师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。

课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。

师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。

学生汇报交流,学生可能会发现以15000为分界线,11000,12000,13000,14000接近1万,16000,17000,18000,19000接近2万。

教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。

教师借机在黑板上板书:0、1、2、3、4 舍;5、6、7、8、9 入,介绍“四舍五入”法。

【设计意图:结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】

(二)合作学习,探究“四舍五入”法求一个数的近似数。

1.参加国庆阅兵的精确人数是233482人,在下图中找到这个数的大致位置,说一说“约20万人”,这个数是怎样得到的?

合作要求:1.同桌2人一起学习,共同完成学习任务。2.学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。3.组织简单、清晰的语言准备全班汇报。

教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。

2. 全班交流。生可能想法:在数线图上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数“33482”舍去变成5个0,得到近似数20万。

请多组的学生表达自己的想法,只要说得有道理,给予鼓励。

3. 教师小结:四舍五入到十万位,关键看万位。

4. 如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。

5. 引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?

【设计意图:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生独立思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】

三、巩固练习

1. 读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)

鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。

2. 华山是我国的五岳之一,海拔约2155米,在下图上标一标,四舍五入到百位大约是多少米?

学生独立完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。

3. 按要求填表。

提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。

【设计意图:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】

四、课堂总结

这节课你学到了什么?请学生说说这节课的收获。

师:这节课我们经历了探索求近似数的过程,会用“四舍五入”法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。

板书设计:

近似数

0、1、2、3、4 舍 18000≈20000

四舍五入法

5、6、7、8、9 入 233482≈200000

最新人教版数学四年级上册教案

小学上册数学教案 篇八

教学目的:

1、使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

2、进一步培养学生分析问题的能力。

教学重点:

使学生理解并掌握求一个数的几分之几是多少的两步计算应用题的数量关系,正确解答。

教学难点:

辨析两次判断单位“1”有什么不同。

教学过程:

一、基本练习。

1、先说出下列各算式表示的意义,再口算出得数。

2、指出下面每组中的两个量,应把谁看作单位“1”。

1)香蕉的筐数是苹果的。

2)香蕉的筐数的和苹果的筐数相等。

3)黄牛只数的等于水牛的只数。4)水牛的只数相当于黄牛的。

二、新课学习。

1、出示例2。

2、读题,分析题意。说出已知条件和所求问题。明确这是一道两步计算的应用题。

3、怎样用线段图表示已知条件和问题。

思考:要画几条线段?5/6和2/3分别是谁的5/6和2/3?单位“1”分别是什么?

根据学生的回答画图。

4、确定每一步的算法,列式计算。

1)求小华储蓄的钱数怎样想?

思路:根据“小华储蓄的钱数是小亮的5/6,把小亮的钱数看作单位“1”,就是求18的5/6是多少,所以用乘法计算。列式:

(元)

2)求小新储蓄的钱数怎样想?思路同上。注意认清单位“1”

5、指导列综合算式解答。

6、总结今天所学内容和昨天的异同。

7、练习

1)完成课本P15页下的“做一做”。

2)指名说一说是怎样确定计算方法的。

三、新课小结。

1、分数乘法两步应用题与前一节所学的一步应用题有什么相同点和不同点?

2、解答这类应用题的关键是什么?怎样判断计算方法?

四、巩固练习:P16练习四6、7。

五、作业。

完成练习四的第8—10题。

新人教版数学上册教案 篇九

一、复习内容:

第一章:全等三角形

第二章:轴对称

第三章:勾股定理

二、复习目标:

八年级数学本学期知识点多,复习时间又比较短,只有一周多的时间。根据实际情况,应该完成如下目标:

(一)、整理半学期学过的知识与方法:

(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

(三)、通过半学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。

三、复习方法:

1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。

4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。

四、复习阶段采取的措施:

1.精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。

2.对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。

3.在试题的选择上作到面面俱到,重点难点突出,不重不漏。

4.面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。减缓他们学习中的坡度,使他们经过努力,能够达到大纲中规定的基本要求。对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

5.重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理学习的知识,指出重点和易错点,解答学生复习时遇到的问题,使学生在学习中体会成功,调动学习积极性。

6.改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、易三档作业,使每类学生都能在原有基础上提高。

小学上册数学教案 篇十

一、教学内容

小学数学(新课标人教版)四年级上册P112—P113第七单元《数学广角》例1、例2

二、设计理念

“数学广角”(第一课时)是义务教育课程实验教科书人教版数学新增设的一个内容,和前面几册教材一样,在本册中也专门安排“数学广角”一单元,向学生渗透一些重要的数学思想方法。

《标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课时主要是通过日常生活中的一些简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。在日常生活中,解决问题的方法学生很容易找到,而且会找到解决问题的不同的策略,本课的关键是让学生理解优化的思想,形成从多种方案中寻找方案的意识,提高学生的解决问题的能力。

三、活动目标:

1、知识目标:

(1)使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。

(2)使学生认识到解决问题策略的多样性,形成寻找解决问题方案的意识。

2、能力目标:

(1)使学生理解优化的思想,形成从多种方案中寻找方案的意识,提高学生解决问题的能力。

(2)使学生在自主探索、合作交流中积累从事数学活动的经验,逐渐养成合理安排时间的良好习惯。

3、情感目标:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

四、教学准备

多媒体课件、卡通园片、纸片、、、等。

五、活动设计过程:

活动一:创设情景走进生活

师:星期天的上午,小明家的门铃响了,原来是王阿姨到小明家来了。(多媒体出示)请同学们仔细观察课件上的图,你了解到了什么?谁来说给大家听一听。师:我们来看看小明沏茶都需要做哪些事?分别需要多长时间?(多媒体出示沏茶的各项工序图)

2、学生自主设计方案(小组合作学习)

师:小明需要做这么多事,你帮小明想一想,他应该先做什么?再做什么?怎样才能让客人尽快喝上茶?请同学们以小组为单位,设计一种能尽快让客人喝到茶的方案。

3、展示学生不同的方案

小组的同学展示自己不同的方案,这里课堂生成的资源可能很多,教师要注意让学生充分展示自己的想法和思维过程。展示出各小组不同的设计方案。(学生用的自己的方法表明整个过程)

4、学生比较选择并选出最合理的安排方法

让学生从不同的方案中,通过观察比较,找出自己认为能让客人尽快喝到茶的方案。

5、小结:刚才的方法都是通过同时做几件事才节省时间,那么我们在做一些事时,能同时做的事情越多所用的时间也就越短。

(设计意图:客人到了,先为客人沏杯茶,这是常见的招待客人的礼仪之一,也是孩子们熟悉的,因此我调整了教材的内容例1和例2的顺序,浓郁的生活气息把学生请进招待客人的具体环境中,然后让学生根据自己的经验讲一下沏茶所要做的事情,再现熟悉的生活情景,激发学生学习数学的兴趣。)

活动二:探究新知,研究问题1、出示例1,呈现研究问题:请王阿姨喝完茶,小明的妈妈准备用自己最拿手的烙饼招待她,(多媒体出示例1图)

(1)你从画面上得到哪些数学信息?

(2)想一想,如果只烙一张饼,需要多长时间?

(3)如果要烙两张饼,最快要用几分钟?

(4)学生回答后并共同总结:我们烙两张饼的时候,可以同时烙两张饼的正面和反面,所用时间是6分钟。(教师边叙述,课件出示表格)

(5)那如果烙4张、6张、8张、10张呢?

自主设计方案(自主设计方案是把学习的主动权交还给学生,使学生真正成为学习的主人。)

A、如果妈妈、王阿姨和小明每人各吃一张饼,一共需要烙几张饼呢?

B、请你们帮小明妈妈想一想,她应该怎样烙“才能让大家尽快地吃上烙饼?”先用你们小组内准备好的卡通圆片,摆一摆,小组的同学说一说,然后把你们的设计方案填在表格里。

C、展示学生不同的方案这里是学生思维过程的展示,生成的教学资源一定很多教师要注意倾听,同时让学生们也要注意倾听其他小组的不同方案。

D、学生比较并选择最合理的安排方法

E|教师演示,烙三张饼的方法和最短时间。

F、拓展延伸:想一想,如果要烙5张饼,怎样烙才能尽快吃上饼呢?7张呢?9张呢?这里让同学先独立思考,然后小组交流,最后集体交流。同时把表格填完整。

3、小结:同学们,今天我们在数学广角里遇到的问题,生活中也会经常遇到,我们只要合理的安排事情,可以节省时间,提高效率。

活动三:结合生活,实践应用

1、同学们谈谈,生活中哪些事情可以通过合理的安排来节省时间提高效率?2、一个小女孩遇到一个问题,看我们能不能帮她解决?出示做一做2

3、谁来告诉大家你按照怎样的顺序呢?(也可进行讨论)

(设计意图:让学生在生活中学,到生活中用,在课堂中设置学生感兴趣的问题,充分调动学生的积极性。)

四、课堂小结

通过今天这节课的学习,你有什么收获?

你有什么想说的吗?(让学生畅所欲言,把自己的想法都说出来。)

五、生活回归

回家后,请你给妈妈烧壶水,给爸爸沏杯茶(解决生活中的实际问题。)

一年级数学上册人教版教案 第十一篇

教学目标:

1、能够借助具体物体正确地数出5以内物体的个数,理解5以内数的具体含义,知道5以内数的组成,会读写5以内各数。

2、初步培养学生的观察、操作及抽象概括能力。

3、感受数学与日常生活的密切联系,体会学习数学的乐趣。

教学要点分析:

教学重点:理解1—5各数的含义。

教学难点:写1—5各数。

教学关键:由于学生刚刚入学,所以教师的组织教学显得尤为重要。

教学准备:

教师:带领学生参观学校的活动课,坦克等图片,点子图,田字格。

学生:5根小棒或小正方体块。

过程设计:

活动一:谈话引入

同学们,昨天参观活动课时,我们看到了大哥哥、大姐姐们在科技小组活动的情况,想不想知道朝阳小学一年级的小学生参加科技活动小组的情况呢?

[设计意图:由于学生刚刚入学,对科技小组的活动还不够了解。通过课前的参观活动,不但可以激发学生对科学的兴趣,而且能够提高学习本节内容的积极性,可谓一举两得。]

活动二:教学1—5各数的意义。

1、同学们在做什么?(指导学生有序进行观察)

小女孩提出了一个数学问题“坦克有几辆?”谁来告诉她?

谁能试着提出类似的问题?

谁能帮他解决?你是怎么知道的?注意对数数方法的指导。

按顺序板贴:火箭、坦克、汽车、机器人和飞机图。

2、小结:一辆坦克我们可以画一个点子,用数字1表示;两支火箭画几个点子,用数字几表示?等等。(板书)

3、拓展:我们身边或生活中数量是1—5的物体有许多,谁能用上1—5中任意一个数字说一句话?

[设计意图:由于学生刚刚入学,提出有价值的数学问题的能力较差,教师通过让学生提类似的问题,有效地进行引领。另外,注意组织学生交流数数的方法,培养学生解决问题策略的多样化。并通过小结,发展学生的抽象概括能力,渗透对应思想。]

活动三:1—5各数的书写

1、刚才老师写的数字漂亮吗?你想不想写写看?

教师在田字格中边示范边讲解1—5各数的写法,重点说明从哪里起笔,在哪里拐弯,在哪里停笔及在方格中的布局。(有条件的可以利用课件动态演示讲解,提高学生书写的积极性)

2、学生练习。

3、师生评价同学书写的情况,以便更好地进行书写。

[设计意图:评价可以促进学生更好地学习。在学生练习写数后,教师组织学生进行互评,不但可以让学生对于数字的书写有更加清晰的认识,而且从中学会欣赏别人、尊重别人。]

活动四:1—5各数的组成

1、同学们愿意做分小棒的游戏吗?把4根小棒分成两堆,可以怎样分?自己分分看,看谁能想出不同的分法?

2、学生汇报,引导学生有序思考,师条理地进行板书。

3、教学2、3、5的'组成时,师提出问题后,先让学生想,有困难的可以摆小棒。

4、对口令游戏:

(老师演示:某某同学我问你,5可以分成1和几?

或:5可以分成几和3?或:2和3组成几?)

同桌游戏。

[设计意图:学生通过操作得出1—5各数的组成后,熟练识记也很重要。这里不是让学生死记硬背,而是通过玩对口令游戏,让学生在轻松愉悦的氛围中进行学习。]

活动五:自主练习

第1题:图上画了哪些文具?橡皮有3块,连数字3;小刀、铅笔、文具盒各有多少,用哪个数字表示呢,连一连。

指导学生用直尺连线。

第2题:把各种水果的数量在田字格中记下来,比一比,谁写的漂亮。

第3题:根据计数器珠子的变化,感受数的顺序,并根据珠子的数量画点子,再用数字表示出来。

活动六:总结延伸

这节课学得高兴吗?课下寻找数量是1—5的物体,比一比谁发现得多。

[设计意图:学习数学的目的之一是为了解决生活中的实际问题。通过课下让学生找数量是1—5的物体,既巩固了本节课所学的知识,又使学生感受到数学与生活的密切联系,使他们体会到生活中处处有数学。]

新人教版数学上册教案 第十二篇

Ⅰ、平行四边形

(1)平行四边形性质

1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形。

2)平行四边形的性质(包括边、角、对角线三方面):

边:①平行四边形的两组对边分别平行;

②平行四边形的两组对边分别相等;

角:③平行四边形的两组对角分别相等;

对角线:④平行四边形的对角线互相平分。

【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点。

(2)平行四边形判定

1)平行四边形的判定(包括边、角、对角线三方面):

边:①两组对边分别平行的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③一组对边平行且相等的四边形是平行四边形;

角:④两组对角分别相等的四边形是平行四边形;

对角线:⑤对角线互相平分的四边形是平行四边形。

2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线。

3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

4)平行线间的距离:

两条平行线中,一条直线上的任意一点到另一条直线的。距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。

Ⅱ、矩形

(1)矩形的性质

1)矩形的定义:有一个角是直角的平行四边形叫做矩形。

2)矩形的性质:

①矩形具有平行四边形的所有性质;

②矩形的四个角都是直角;

③矩形的对角线相等;

④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点。

(2)矩形的判定

1)矩形的判定:

①有一个角是直角的平行四边形是矩形;

②对角线相等的平行四边形是矩形;

③有三个角是直角的四边形是矩形。

2)证明一个四边形是矩形的步骤:

方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;

方法二:若一个四边形中的直角较多,则可证三个角为直角。

3)直角三角形斜边中线定理:(如右图)

直角三角形斜边上的中线等于斜边的一半。

Ⅲ、菱形

(1)菱形的性质

1)菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2)菱形的性质:

①菱形具有平行四边形的所有性质;

②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点。

3)菱形的面积公式:

菱形的两条对角线的长分别为,则

(2)菱形的判定

1)菱形的判定:

①有一组邻边相等的平行四边形是菱形;

②对角线互相垂直的平行四边形是菱形;

③四条边都相等的四边形是菱形。

2)证明一个四边形是菱形的步骤:

方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;

方法二:直接证明“四条边相等”。

Ⅳ、正方形

(1)正方形的性质

1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2)正方形的性质:

正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角。

3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心。

(2)正方形的判定

正方形的判定:

①有一组邻边相等且有一个角是直角的平行四边形是正方形;

②有一组邻边相等的矩形是正方形;

③对角线互相垂直的矩形是正方形;

④有一个角是直角的菱形是正方形;

⑤对角线相等的菱形是正方形;

⑥对角线互相垂直平分且相等的四边形是正方形。

人教版二年级上册教案数学 第十三篇

人教版二年级上册教案数学1

数学活动《小熊请客》是以故事小熊请客导入,以游戏化、生活化的方式带幼儿进入数字、圆点、实物三者的相匹配的学习中。活动流程是这样的,我先通过导入今天我们班要来一位新朋友—小熊,并出示小熊的图片,来激发幼儿的兴趣。

第一个环节:看!小熊今天请了一些小动物,还分别给它们准备了一些食物,并出示图片。因为这些都是孩子们熟悉的动物朋友小猫、小狗、小鸡、小猴等,孩子们很是喜欢。所以让他们一起来说一说都有谁。

第二个环节是是请客人用餐,根据小熊为朋友们准备的食物,进行手口一致地点数,数一数,小猫吃了几条鱼如:1、2、3、4一共有四条鱼。并让幼儿根据盘子里的食物数量给圈点涂色,吃了三条鱼就涂满三个圆点,再找到对应的数字3,将数字圈起来。接下来的小动物方法同上面一样,让幼儿和老师一起说一说。

第三个环节是是让幼儿在活动材料《数学》第3页上进行操作,个别能力弱的孩子我适时提醒启发他,边巡视边指导。

第四个环节是老师进行一个点评,对幼儿在做的过程出现的错误进行纠正。

不足之处和调整:在此次数学活动中,第一环节中我觉得我准备的还不是怎么充分,应该做一个PPT,把小熊请的小客人逐一的出示出来,然后让幼儿猜一猜小熊分别给它们准备了哪些好吃的,利用幻灯片的形式让这些食物显现出来,来激发幼儿的兴趣,使教学活动更加丰富多彩。第二个环节的时候,我忽略了教幼儿数东西的方法,如小鸡吃了四条虫子,应该手指头先指好第一条虫子,开始数,这样能避免少数或多数的情况发生。在让幼儿进行涂圆点和圈数字的时候我也考虑的不是很全面,可以手绘一张图,老师先示范怎样涂和圈的,然后再请能力强一点的幼儿做一个榜样,最后在让能力弱一点的涂和圈,指出可能出现的问题,并及时的纠正。在讲评的时候,可以拍下幼儿操作中错误的地方,而不是拿幼儿的本子上来评讲,这样会导致有些坐在后面的幼儿看不清,本子可以放在桌子上,不要拿在手里,避免有些幼儿玩手里的本子不认真听。对于能力差,做的不好的幼儿要给予鼓励,如告诉他只要把刚刚说的那些错误改正了,就能像其他幼儿一样全对了。最后活动延伸的时候我可以把它延伸到区域活动或者是日常生活中,如制作一些相应的图片让幼儿找一找小青蛙吃了几条虫子,并涂一涂圆点,圈一圈相应的数字。

人教版二年级上册教案数学2

通过这节课的教学过程,体现新课标的理念,使课堂真正做到以学生为主体,以学生的发展为目标。通过小熊请客的故事,数、摆、再数、列乘法算式、编口诀等活动,使学生口、手、眼、脑多种器官参与,经历知识形成过程;学生在学习中表现为乐于学、善于学,主体意识得到充分发挥。在教师的引导下,学生通过自主探索,合作交流,学得积极主动,取得良好的教学效果。但还有许多不足,如在合作交流中,有一些学生还不太积极主动,在以后的教学中要注意研究探索如何加强学生的合作意识。

乘法口诀的教学一般是比较枯燥无味的,但本课设计新颖,富有情趣,体现了数学学习和生活的密切联系。从“小熊请客”的情境入手,一下子就吸引了爱听故事的小学生,学生轻松地从情境中开始数学知识的学习。新知的探索主要是在学生自主学习、合作交流、共同探索中完成。如小组试拼图形、小组摆放图形、小组合作写算式、合作编口诀都体现了数学课程标准所倡导的新的教学理念。这样的教学过程是一个让学生经历体验的过程,多次的小组学习可以提高学生的合作能力,使学生具有团队精神。新知的应用在老师的启发下学生密切联系实际,体验到了数学和生活的关系。练习的设计考虑到了学生的童心、童趣,激发了学生参与的积极性,又一次体现了“学数学、用数学、做数学”的新理念,同时渗透德育教育,促进了师生之间、学生之间的语言感情交流。整节课老师始终面带微笑,态度温和,语言具有亲和力,接近学生的心灵,体现了“欣赏学生、赞美学生”这一理念。师生共同创造了一个和谐、宽松、自由的学习氛围,教学效果令人满意。

人教版二年级上册教案数学3

教学目标:

1、在丰富的感性认识3的乘法口诀,然后记住3的乘法口诀,并能运用3的乘法口诀进行计算。

2、培养学生观察、操作、类推、概括、理解、记忆等方面的能力。

3、通过各式和样的练习,培养学生乐于探索、勇于争先的优秀品质。

教学重点:3的乘法口诀的编制、记忆和运用。

教学难点:对“数学故事”的理解、表述和解疑。

教学准备:挂图 乘法口诀卡片。

教学过程:

一、情景创设

师:“同学们,你们喜欢做手工吗?谁能说说你会用自己的这双小手做些什么呢?”

“这是一个周末,方方想给自己的好朋友每人送一辆自制的三轮车,就把各个零件拿出来进行组装,聪明的小朋友们,你能帮他算算,一共需要几个轮子吗?”

二、问题探究

谈话:1辆三轮车需要3个轮子,2辆需要6个,那么3、4、5、6、7、8、9辆三轮车要几个轮子?

三、体验感悟

1.拿小棒摆三角形

2.一个三角形用几个小棒?能列乘法算式吗?编制口诀?

3.板书:1×3=3

一三得三

4.组织学生摆2、3、4、……个三角形,写算式,编制口诀

四、实践应用

“练一练”

1题:找朋友

2题:找规律填数

3题:动物运动会

数学故事

五、小结

这节课你学懂了什么?

六、布置作业

一课一练第10页

板书设计

需要几个轮子

1×3=3 2×3=6 3×3=9 3×4=12

一三得三 二三得六 三三得九 三四十二

3×5=15 3×6=18 3×7=21 3×8=24

三五一五 三六十八 三七二十一 三八二十四

3×9=27

三九二十七

教学反思:

这节课学生掌得不错,记忆方法也能掌握。口诀大部分同学能在课堂上背出来。应用方面还有欠缺。

人教版二年级上册教案数学

熟读唐诗三百首,不会做诗也会吟。上面这13篇人教版数学上册教案就是快回答为您整理的人教版数学上册教案范文模板,希望可以给予您一定的参考价值。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。