作为一名教师,通常需要准备好一份教案,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!读书之法,在循序而渐进,熟读而精思,以下是可爱的小编给大家整理的六年级数学下册教案(优秀15篇),欢迎阅读,希望大家能够喜欢。
小学六年级人教版数学下册教案 篇一
一、教学目标:
1、使学生在理解算理的基础上初步掌握一位数除两位数,商是两位数的计算方法。
2、培养学生观察、分析、推理、概括的能力。
3、掌握除法竖式的书写格式,培养学生认真审题的习惯。
二、 教学重点:
掌握一位数除两位数(十位能整除)的笔算方法。
三、教学难点:
1、掌握一位数除两位数,商是两位数的笔算过程中的试商方法。
2、竖式的书写格式。
四、教具准备:
小棒,口算卡片。教学过程:五、教学过程:
(一)学前准备1、口答。
42是由几个十和几个一组成的?28是由几个十和几个一组成的?52如果去掉4个十,还剩下几个一?
2、板演。
订正时,请同学们说一说是怎样求出商的,每道题各用哪一句口诀求商,我们在写竖式时要注意什么。
3、导入新课。
出示主题图。
(1)理解图意。
(2)说一说你从图中看懂了什么。
(3)想一想:我们能用前几节课学过的方法来算出同学们提出的问题的结果吗?
(二)探究新知
1、学习教材第15页例1。
(1)解决学生甲提出的问题:42除以2等于多少。
(2)明确42÷2表示什么意思。
(3)提问:乘法口诀表中有“二()四十二”的口诀吗?你能用前面学过的方法算出它的结果吗?
(4)想一想:写竖式要分几步来写?
(5)试一试,写出竖式。
(6)交流笔算方法。
(7)图式结合。
从图上看,每份是21根;从竖式上看,得数是21。2、师生共同归纳笔算除法的方法。(三)课堂作业新设计
1、计算教材第19页练习四的第1题中的 、
(1)独立完成下面两道除法算式题,请两名同学板演。
(2)教师巡视,指导学习有困难的学生。
(3)集体订正,请同学叙述计算过程。
2、看病门诊。
(1)观察、研讨计算中出现的错误。
(2)改正错误之处。
(3)提出改进方法。
3、计算教材第19页练习四的第1题中的 、
(1)看清题中数据。
(2)独立完成。
(3)集体订正。
(4)回顾做题过程,总结计算方法。
(四)思维训练
你能尝试解决同学们提出的主题图中的第二额问题吗?四年级平均每班种多少棵树?
小学六年级人教版数学下册教案 篇二
一、教学目标:
1、认识千米,初步建立1千米的长度概念,知道1千米等于1000米。
2、会进行长度单位间的换算及简单的计算。
3、进一步培养学生的估测意识和实践能力。
二、教学重点:
建立1千米的长度概念,会用千米表示实际长度。
三、教学准备:
要求学生到路边观察路标,教师制作一块路标。
四、教学过程:一、复习导入
1、教师提问:我们都学了哪些长度单位?
学生回答后,让学生具体表示一下1毫米、1厘米、1分米及1米的长度。
2、教师说明:我们以前学过的长度单位比较大的是米。你们还见过或听说过比米大的长度单位吗?
学情预设:学生可能会提到“千米”。
二、探究新知
1、认识千米。
教师出示例3的情境图。(有条件的学校也可以播放提前录制好的视频录像,录像中出现路牌标志)提出下面的问题:类似图中的情境你见过吗?从图中你知道了什么?
【学情预设:看到上面的情境图,学生一下子会调出已有的知识经验,他们会想到周围的路标。】学生根据自己的生活经验解释路标上的“21千米”和“23千米”是什么意思。教师指出:在计量比较长的路程的时候,通常用千米作单位,千米也叫做公里。千米是比米大的长度单位。
2、出示老师收集到的学校附近的路标,让学生理解、体会从某路口到当地某个标志性建筑的路程是多少千米的含义。
3、建立1千米的长度概念
(1)师:那么1千米的路程有多远呢?它与我们以前学过的长度单位“米”有什么关系呢?同学们都喜欢上体育课,(教师出示学校操场的图片)学校操场的跑道一圈是400米(注:每个学校的跑道可能不相同,这里仅以400米为例说明大体教学思路,实际教学时,尽可能用学生身边的数据),算一算,跑几圈就是1000米?
教师指出:1000米就可以用较大的长度单位来表示,就是千米。
板书:1千米(公里)=1000米
教师:同学们上学,有步行的,有骑自行车的,有坐公交车的,还有父母开车接送的。人步行每小时可以走5千米,骑自行车每小时可行15千米,坐公交车每小时可以行40千米。你们能估计一下从自己家到学校有多少千米吗?
(2)实际感受1千米。
到操场上量出100米的距离,让学生仔细观察一下。并让学生按一般的步行速度实际走一走,所需时间大约是1分十几秒。(注:这个教学环节也可以放到课前进行)。然后告诉学生10个这样的长度就是1千米,一般步行12分左右的距离大约是1千米,并让学生想象一下10个100米有多远。
4、完成教科书第8页上的“做一做”。到校门口,以小组为单位,互相说一说(估)从学校门口到什么地方大约是1千米?在确保学生安全的前提下,可以组织学生到校外走1千米的活动,感受1千米的距离。(注:如果条件不允许,此题可以作为课外作业)
5、教师出示教科书第22页的例5。
3千米=( )米 5000米=( )千米教师放手让学生先独立填写,然后让学生在组内互相说说是怎样想的。
通过学生回答,使学生明白:1千米是1000米,3千米是3个1000米,就是3000米;1000米是1千米,5000米是5个1000米,就是5千米。
6、练一练。
6000米=( )千米 4千米=( )米
( )米=7千米 9000米=( )千米
【设计意图:本节课的教学,教师没有平均使用力量,教学时把重点放在千米的认识上,长度单位间的变换由于学生基本上属于“教师不讲就会”的状态,所以教师花费的教学时间相对就少一些。】
三、巩固练习
1、指导学生完成练习二第1、2题。
第1题,是关于物体运动速度的练习,目的是让学生对常见物体运行速度有一定的认识。可以先让学生独立完成,然后再进行反馈。
第2题,目的是帮助学生进一步感受千米在生活中的应用。可以让学生独立完成。
2、练习二第3题。
学生在教科书上独立完成,然后集体订正。
3、解决生活中的问题。
(1)老师家离学校大约有4千米的路程,如果让你选择,你会选择什么交通工具来学校?为什么?大概需要多少时间?
(2)妈妈带小明坐长途汽车去看奶奶,途中要走308千米。他们早上8时出发,汽车平均每小时行80千米,中午12时能到达吗?
四、课外拓展
1、汽车在高速公路上行驶每小时不能超过( )千米,磁悬浮列车每小时可行驶( )千米,地球绕太阳每秒运行( )千米。马拉松长跑比赛全程大约( )千米。(课后可在父母的帮助下到图书馆或网上查找这些资料。)
2、写一篇数学日记:《我心目中的千米》
【设计意图:教师在落实了教材所设定的教学目标后,课末布置了学生课后实践调查活动,把学生带向了研究性学习的行为中,为学生自主学习创造了环境。】
小学人教版六年级数学下册复习教案 篇三
教学准备
教学目标
1、 在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、 培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重难点
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程
教学过程:
一、复习
1.指名学生说出圆柱的特征。
2.口头回答下面问题。
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽。
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义。
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
六年级数学下册教案 篇四
教材分析:
本单元在学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱和圆锥也是基本的几何形体,在日常生活和生产劳动中经常能够看到这些形状的物体。教学圆柱和圆锥,能够扩大学生认识几何形体的范围,丰富对形体的认识,有利于解决更多的实际问题。教学圆柱和圆锥,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义和常用的体积单位,有利于完善认知结构,发展空间观念。教学圆柱和圆锥,还能够给学生提供探索表面积和体积计算公式的机会,有利于转化能力和推理能力的进一步提高。全单元编排五道例题,具体安排见下表:
例1 圆柱、圆锥的形状特点
例2 圆柱的侧面积
例3 圆柱的表面积
例4 圆柱的体积
例5 圆锥的体积
教学目标:
1、 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
教学重点:圆柱体积计算公式的推导和应用。
教学难点:灵活运用知识,解决实际问题。
课时安排: 10课时
第一课时:认识圆柱和圆锥
教学内容:教材第9~10页的例1和第10页的“练一练”,完成练习二第1~3题。
教学目标:
1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.
2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点:掌握圆柱、圆锥的特征。
教学难点:掌握圆柱、圆锥的特征及空间观念的形成。
教学准备:1、多媒体 2、学生每人准备一个圆柱或一个圆锥形实物。
教学过程:
一、创设情境,初步感知。
1、课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图
2、教师:这么多物品,你知道它们各是什么形状吗?
指名学生分别说。
谈话:回忆一下学过的图形各有什么特征?学生回答。
谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱
图(5)是什么形状?板书:圆锥
你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)
这节课就让我们一起进一步认识圆柱、圆锥。
二、合作探究,认识特征
(一)认识圆柱的特征
1、激发兴趣、提出问题
谈话:对于圆柱和圆锥,你想知道有关它们的哪些问题?
学生回答,教师把有关圆柱、圆锥的问题写在黑板上。
谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?
2、认识圆柱的底面和侧面
教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。
谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。
①先看一看,你认为它有几个面?
②再摸一摸每个面有什么特征?
③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?
教师巡视解答疑惑。
汇报观察结果:
谈话:谁来说说自己的发现?
(先指名学生拿着实物到前面介绍自己的发现,再指名不拿实物说发现。师生及时共同进行评价)
谈话:你是怎么知道上下2个面大小相同的?
指名说,鼓励学生用不同的方法来解决问题。
教师适时加以引导,让学生明确:圆柱上、下两个面是圆形,大小相等,叫圆柱的底面,中间有一个曲面,叫圆柱的侧面。
课件随时演示,将茶筒的底面和侧面抽象出的圆柱立体图形
板书:底面 2个完全相同的圆
侧面 1个曲面
高 两底之间的距离
3、认识圆柱的高
教师从学生拿来的圆柱中随便找两个高矮、粗细不同的圆柱,让学生观察比较。提问:你有什么发现?底面大小决定圆柱粗细,高决定圆柱的高矮
谈话:哪是圆柱的高,谁来指一指?
谈话:你知道你手中的圆柱形有多高吗?想知道它的高有多少条吗?
小组合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?
教师巡视指导
汇报测量结果。指名一组到讲台前演示,
使学生明确:圆柱的高长度相等,有无数条。
提问:什么是圆柱的高?
学生回答,教师板书:板书:高 上下两底面之间的距离(无数条)
教师出示课件演示圆柱的高
(二)认识圆锥
1、谈话:刚才我们认识了圆柱,现在请同学们拿出自己准备的圆锥形物体,观察圆锥体,摸一摸、量一量,和圆柱比一比,它与圆柱有什么不同?你能发现什么?把你看到的、摸到的与小组内的同学交流交流。
学生小组内交流。教师巡视指导。
指名汇报观察结果。
使学生明确圆锥有一个底面是圆形,有一个侧面是曲面。圆锥是尖的有一个顶点。
教师出示圆锥实物课件
思考:圆锥有几条高?
怎样测量圆锥的高?
学生讨论,教师启发学生用平移的方法将藏在圆锥中的高平移出来测量,学生合作动手测量圆锥模形的高并指名上台演示。
板书:底面 1个 圆形
侧面 1个 曲面
高 1条
2、交流对圆锥的认识
3、小组讨论比较圆柱与圆锥的有什么区别与联系?
4、生活中你还见过那些物体是圆锥形的?
5、学生阅读课本9、10页的内容。
三、巩固练习
四、课堂小结 回顾新知
今天这节课你有什么收获?
使学生进一步掌握圆柱和圆锥的特点,巩固圆柱与圆锥的区别与联系。
五、课堂作业
练习二第3题。
板书设计:
认识圆柱和圆锥
观察—比较—归纳
第二课时:圆柱的侧面积和表面积
教学内容:教材第11页的例2、第12页的例3和第12页的“练一练”,完成练习二第4~6题。
教学目标:
1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。
2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。
3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学重难点:
1、理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。
教学准备:师生各备一易拉罐,并把上下面用彩纸包好,剪刀、胶水、圆规、白纸一张、计算器。
教学过程:
一、实验导入,渗透思想
⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?
小结:原来在一定条件下平面可以“化直为曲”。
⒉把这个圆柱形的纸筒打开后是什么形状?
小结:同样地,在一定条件下曲面可以“化曲为直”。
⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)
二、引导探究,学习新知
(一)圆柱的侧面积的计算
老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?
师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)
1、引导探究圆柱侧面积的计算方法
①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?
②全班交流:沿着接缝把商标纸剪开,再展平。
③小组合作探究:
那就让我们一起来研究一下,听清要求:先独立剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。
④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)
⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)
⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。
2、计算圆柱的侧面积
①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是 厘米,高约是 厘米)你是怎样算的?
②解决例2:
但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生独立做在书上,指名一生板演,集体反馈。
③思考:要求一个圆柱的侧面积,通常需要知道哪些条件?
④小结:如果没有直接告诉底面周长,应用已知直径(或半径)求周长的方法,然后求侧面积。
(二)探索圆柱表面积的计算方法
1、理解圆柱表面积的含义
①动手贴出圆柱表面积:拿着实物,光这样一个侧面能装饮料吗?还需加上(两个底面)我们把这个圆柱饮料罐各部分一一展开粘在纸上(学生动手操作,师巡视发现两种常见粘法)交流展示,最好这样放。
看着圆柱展开图,让它在头脑中动起来(长方形的长等于…宽等于…)这样我们可以更清楚地想象出长方形与圆柱的关系。
指着图,由这些些部分组成了圆柱的表面积,什么是圆柱的表面积?(板书)
②动手画出圆柱表面展开图:下面我们要画圆柱的展开图,画前先算一算,学生算好后回答,师板书。
要求画在书上的方格纸上,友情提醒:一要想要画出圆柱的哪几个面?二要注意每个方格纸边长厘米,根据算的数据合理布局。(实物投影展示学生作品,作评价)
3、怎样计算圆柱的表面积?
①例3中的圆柱表面积会算吗?
独立做在书上,交流反馈:每步求出的是什么?指出:解答时为清楚最好分步算出各部分面积。
②出示易拉罐的数据,图例:半径:2.5厘米,高:12厘米,求铁皮用料。
③要求一个圆柱的表面积,通常需要知道哪些条件?
三、应用练习,巩固深化
过渡:在实际生活中,有很多圆柱体实物,你会根据实际算出它们要求的面积吗?
1、教材第12页“练一练”(理解题意要求的是圆柱的哪部分面积后独立做)
2、练习二第6题。(通过填表帮助学生进一步区分圆柱的侧面积、底面积、表面积三个不同的概念和不同的算法;整理侧面积、底面积与表面积之间的联系,使计算圆柱表面积的思路更加清楚)
四、全课总结,认识升华
通过今天这节课的学习,你有哪些收获?还有什么问题吗?
五、课堂作业
练习二第4、5题。
六年级数学下册教案 篇五
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
设计意图直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的',学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
六年级数学下册教学计划人教版 篇六
一、本班学生情况分析:
本学期继续担任六(1)班的数学教学工作。从上半学年的教学情况来看,六(1)班的学生在数学学习上两极分化比较严重,大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握比较牢固,有一定的学习数学的能力。但也有十来个学生基础知识不牢固,上课不认真听讲,不能独立完成学习任务,需要老师督促并辅导。还有一部分比较认真但解决问题的能力较差,只能掌握一些基础知识,稍稍拐个弯就不知所措。本学期重点还是抓好学习上有困难的学生教学,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。
二、本册教学内容:
这一册教材包括位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。
三、教学目标:
1、理解分数乘除法的意义,掌握分数乘除法的计算方法,会进行简单的四则混合运算。
2、理解倒数的意义,掌握求倒数的方法。
3、理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4、掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5、能在方格纸上用数对表示位置,初步体会坐标的思想。
6、理解百分数的意义,比较熟练的进行有关百分数的计算,能够解决有关百分数的简单实际问题。
7、认识扇形统计图,能根据需要选择合适的统计图表示数据。
四、教学重难点:
经历从实际生活中发现问题,提出问题,解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的饿魅力。形成发现生活中的数学的意识,初步形成观察,分析及推理的能力。
五、教学方法及措施:
1、加强基础知识教学,重视发展学生智力和培养学生能力。遵循学生的认知规律,重视学生获取知识的思维过程,通过学生操作观察演示,实验的方法,培养学生创新能力和自主学习能力。
2、教学中对学生进行思想教育。明确学习目的,培养学生学习数学的兴趣。使学生乐于学习,以全面提高全班学生的数学,注重培养和发展学习的空间观念,注重逻辑教学,让学生多实际操作。
六年级下册数学教案 篇七
一、教学内容
化简比。(教材第50~51页例1)
二、教学目标
1、能运用比的基本性质化简比。
2、理解求比值和化简比的区别。
3、理解知识间的内在联系,渗透类比思想。
三、重点难点
重点:掌握化简比的方法。
难点:理解化简比与求比值的区别。
教学过程
一、复习引入
1、把下面的分数化为最简分数。(课件出示题目)
4/8 6/30 12/18 14/56
点名学生回答,并说一说什么是最简分数。
2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)
3、师:比的基本性质是什么?
4、引出新课。
师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。
二、学习新课
1、认识最简单的整数比。
师:谁知道什么样的比可以称作最简单的整数比?
引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。
教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
指名学生举出几个最简单的整数比。
人教版六年级数学下册教案 篇八
教学目标
1.使学生认识圆柱的底面,侧面和高,掌握圆柱的基本特征,发展学生的空间观念。
2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析、概括的能力。
重点掌握圆柱的基本特征。
难点圆柱的侧面积和它的展开图之间的关系。
教学方法观察法、分析法、归纳法。
学情分析
圆柱是人们在生产、生活中经常遇到的几何形体,学生对于圆柱体并不陌生,只是没有深刻的认识,教学这一部分内容,有利于发展学生的'空间观念,为进一步应用几何知识解决实际问题打下基础。
教学过程
一、创设情景,导入新课
问题:你学过那些立体图形?(长方体、正方体)。
今天老师要教同学们认识一个新的立体图形----圆柱体,简称圆柱。
请同学们拿出你准备的圆柱,老师检查。
老师也收集了一些圆柱的图片,请大家欣赏。
你还见过生活中那些物体的形状是圆柱体。
从一年级我们就知道圆柱体,你认为什么样的图形是圆柱体?说说看。
二、探究新知
1.从圆柱的图片中抽象出圆柱的立体图形。
教师:如果把它们画成立体图形是怎样的?想看吗?
课件演示:从图片中抽象出圆柱。
问:长方体和正方体最多看到几个面?圆柱我们能看到几个面?
2、探究圆柱的基本特征
(1)思考:圆柱的上下两个面是什么样的?叫做什么?
学生观察后得出结论。
教师:小组合作,动手动脑
圆柱两底面的大小怎样?你用什么方法证明?
画、剪、比等等方法。
(2)比较胖瘦两个圆柱,它们有什么不同?是什么原因?
让学生相互讨论,思考。得出:因为圆柱的底面半径不同,所以在高相等的情况下,半径大的圆柱就胖些。
(3)思考:用手摸圆柱周围的面,你有什么发现?
结论:是一个光滑的曲面。
(4)思考:圆柱两个底面之间的距离叫做什么?在哪里?有几条?
学生先用手比划下圆柱的高,在用彩笔画出圆柱的高。试试看,你能画几条。
白板演示,圆柱的高有无数条,
3、拓展应用,发展新知
在生活中,圆柱的高也有不同的称呼,你知道吗?(白板展示)
硬币是厚,井是深、钢管是长。
三、巩固提高,
1、完成P18的第1题
学生独立完成,老师检查。
2、完成P18的第2题
分析:分别以长方形的那条边为轴旋转而成,底面半径和高分别是多少,引导学生用一张长方形的纸来帮助理解
课题总结
通过今天的学习,你认识到了什么?请用“1、2、3、无数”来总结今天学习的内容,你会吗?说说看。
作业能力练习册第13-14页内容,回家体会理解记忆公式。
板书设计
圆柱体的认识
底面侧面高
2个1个无数条
大小一样的圆曲面
教学反思
圆柱是一种常见的立体图形。在实际生活中,圆柱形状的物体很多,学生对圆柱都有初步的感性认识。在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下基础。教学中,重点理解圆柱的高有无数条,而不仅仅是两个底面圆心的连线这一条。还让学生认识到圆柱的立体图形只有两个面。
六年级下册数学教案 篇九
一、教学内容
运用比解决问题。(教材第54页例2)
二、教学目标
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
3、掌握按比分配问题的结构特点及解题方法,发展分析、概括能力。
三、重点难点
重点:理解并掌握按比分配问题的特点和解题方法。
难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
教学过程:
一、复习引入
1、师:比的意义是什么?
引导学生回顾比是什么。
2、一盒糖果有50颗,平均分给甲、乙两人,甲、乙两人各得多少颗糖果?他们所得糖果数的比是多少?(课件出示题目)
点名学生回答,回顾平均分的特点。
3、引出新课。
师:这是一道平均分的问题,生活中,很多问题运用到了平均分,但有时为了分配合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比分配,就是我们今天要学习的比的应用。(板书课题:比的应用)
二、学习新课
教学教材第54页例2。
人教版六年级数学下册教案 篇十
教学内容:
抽取游戏
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:
抽取问题。
教学难点:
理解抽取问题的基本原理。
教学过程:
一、教学例
盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的。,最少要摸出几个球?
1.猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2.实验活动。
(1) 一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2) 一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3.发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做
第1题。
(1) 独立思考,判断正误。
(2) 同学交流,说明理由。
第2题。
(1) 说一说至少取几个,你怎么知道呢?
(2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习
完成课文练习十二第1、3题。
六年级数学下册教案 篇十一
教学目标:
1.认识圆柱,掌握圆柱各部分的名称及特点。
2.能建立圆柱的几何模型,体验从实物中抽象出图形的学习方法。
3.使学生经历操作、观察、比较和探索的过程,提高分析,推理和判断能力。
教学重点:
理解、掌握圆柱的基本特征。
教学难点:
发展空间观念,掌握圆柱的基本特征。
教学准备:
长方体、正方体、圆柱、三角尺、直尺、学习单
教学过程:
一、引“新”明标--引入新课,明确目标
1.创设情境
教师出示粉笔盒,问:“这是什么图形”?唤起对学生已有经验的回顾,为新知识的学习作铺垫。
2.揭题明标
揭示课题后,启发学生思考回答:关于圆柱,你想了解它的哪些知识?(学生自由回答,师将问题整理后抓住关键词读、写、说并板书)
二、探“新”依标--依标导学,探究新知
(一)自学--发现圆柱。
1.找一找:生活中你还在哪儿见过圆柱?
2.展一展:实物展示生活中的圆柱:保温杯、唇膏、电池、圆的笔筒。
3.看一看、想一想:
认真看课本P17,重点观察圆柱由哪些部分组成,要边看,边思考:
①这个圆柱形的物体,它由哪几部分组成的,这些部分有什么特征?
②观察圆柱的上、下两个平面,分别是什么形状?
③你觉得,两个底面有什么特征?
4.说一说
让学生自说说自己的思考结果,验证圆柱的上、下底面是两个大小相等的圆。
5.读一读
圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。
(二)共学--小组合作,理解圆柱
1.剪一剪,量一量,议一议
拿出你制作的圆柱模型,四人小组讨论:
①圈:剪一剪你的圆柱模型。
②量一量:量圆柱上下两个底面的半径、直径;及身高不同大小圆柱的高。
③说:说一说你发现的圆柱两个底面有什么共同的'特征?圆柱的周围是什么形状?圆柱的高矮和什么有关系?
2.展一展,评一评
讲解要求:
①你发现的圆柱上下两个面有什么共同的特征?
②圆柱周围的面(上下面底面除外)是什么形状?
③圆柱的高矮和什么有关系?
小结:圆柱是由3个面围成的,圆柱的上、下两个面叫做底面,圆柱周围的面(上下两个面除外)叫做侧面。圆柱的两个底面之间的距离叫做高。
4.探究拓展
把一张长方形的硬纸贴在木棒上,快速转动木棒,看看转出来的是什么形状?
小结:长方形硬纸围绕木棒快速转动,可以转成一个圆柱。
三、测“新”评标--达标检测,评价目标
1.课本第18页“做一做”第1题
(1)指出下面圆柱的底面、侧面和高
(2)圆柱有几个底面?是什么形状?
(3)圆柱有几个侧面,几条高?
2.课本第18页“做一做”第2题
(1)图一的旋转轴在哪里?
(2)图二的旋转轴在哪里?
(3)为什么同一个长方形会旋转不同的圆柱呢?
3.练习三第1题
根据你对圆柱的理解,你能准确地判断出下面的图形哪些是圆柱吗?想一想为什么其他图形不是圆柱?圆柱具有什么样的特征?
四、结“新”拓标--全堂总结,拓展延伸
在这节课中,你学会了什么知识,你有什么收获
板书设计:
圆柱
底面2个
侧面1个
高一样长
六年级下册数学教案 篇十二
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题
题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新知探究
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:
买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。
解:设买来大米X千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(3)学生试画出线段图。
(4)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(5)根据等量关系式解答问题。
(6)解:设航模小组有χ人。
χ+χ=25
(1+)χ=25
χ=25÷
χ=20
答:航模小组有20人。
三、课堂小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、当堂测评
练习十第4、12、14题。
学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。
设计意图:
继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。
教学后记
六年级数学下册教案 篇十三
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的'直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
小学人教版六年级数学下册复习教案 篇十四
教学准备
教学目标
⒈在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
⒉培养学生良好的空间观念和解决简单的实际问题的能力。
⒊通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识,感受到数学与生活的密切联系。
教学重难点
⒈教学重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。
⒉教学难点:灵活运用侧面积、表面积的有关知识解决实际问题。
教学工具
学生自制圆柱模型、剪刀等
教学过程
一、创设情境,生成问题
⒈谈话导入。
师:老师非常想看看大家亲手做的圆柱体,快拿出来展示一下吧!(教师先大体看一下,不发表意见)谁愿说一说你是怎么做出来的?
指生自由发言。
现:同学们真了不起,用自己的双手和智慧做成了一个个的圆柱体。(拿起一个圆柱体)做这样一个圆柱体,至少需要多大的纸呢?也就是求什么?
揭示:求圆柱体的表面积
⒉揭示课题。
师:这节课我们就来研究圆柱体的表面积。
(板书:圆柱体的表面积)
二、探索交流,解决问题
⒈圆柱表面积含义
师:圆柱体的表面积指的是什么?拿着你的圆柱体给大家说一说。
让生边指边介绍,然后同桌间互相指一指,说一说。
学生通过讨论、交流明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。
⒉计算圆柱的表面积。
师:将制作的圆柱模型展开,展开的面是哪几部分组成的?
学生分小组探究。
交流汇报:圆柱的表面是由两个底面和一个侧面组成的。
(师可把展开后的圆柱,贴在黑板上)
师:你会计算圆柱的底面积和侧面积吗?
让学生自主探究、交流,教师重点指导如何计算侧面积。
学生汇报,师板书:
圆柱的表面积=圆柱的侧面积+两个底面的面积
圆柱的侧面积=底面周长×高
⒊解决实际问题(教学例4)
出示例4
⑴组织学生读题,找出条件,说说实际要求什么。
把实际问题转化为数学问题。
师:厨师帽是由哪几部分组成的?
求厨师帽所用的材料,需要注意些什么?
(厨师帽没有下底面,说明它只有一个底面)
⑵学生分组讨论、交流。
学生通过思考得出:求做一顶帽子至少需要多少面料,就是要我们求帽子的侧面积加上帽顶的面积。也就是计算圆柱的侧面积加上一个底面积。
⑶学生独立完成,指生板演。
⑷校对订正。
订正时让学生讲解题思路和步骤,用到了什么条件。
质疑:在计算时,最后的得数是怎样取得的?
⑸小结:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用“四舍五入法”取近似值,而是用“进一法”取近似值。
⒋强调:
师:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用“进一法”取值,以保证原材料够用。
三、巩固应用、内化提高
⒈完成教材第22页“做一做”。
①组织学生独立完成。
②在小组中相互交流方法。
⒉完成教材第23页练习四第1题。
①组织学生独立完成。
②集体订正,相互交流。
⒊完成教材23页练习四第4题。
①组织学生独立完成。
②要帮助学生理解问题的实际含义,把它转化为数学问题,弄清求的是圆柱哪些部分的面积。
四、回顾整理,反思提升
师:通过本课的学习,你有哪些收获?想提醒大家注意些什么?
课后小结
1、圆柱的表面积由几部分组成?(一个侧面和两个底面)
2、圆柱的表面积如何计算?需要寻找那些条件呢?(侧面:底面周长和高;两个底面:圆的半径)
课后习题
基础:
⒈完成教材练习四第2、3、6题。
⒉一个圆柱,高是10分米,底面周长是12.56分米,它的侧面积是多少平方分米?
综合:
⒊一个圆柱形纸筒,侧面积为157平方厘米,底面直径为5厘米,这个纸筒的高是多少厘米?
4、一圆柱的高是6.28厘米,侧面展开是个正方形,这个圆柱的表面积是多少?
板书
圆柱的表面积
圆柱的表面积=圆柱的侧面积+两个底面的面积
圆柱的侧面积=底面周长×高
帽子的侧面积:
冒顶的面积:
需要面料的面积=帽子的侧面积+冒顶的面积
六年级下册数学复习资料人教版 篇十五
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1.以长方形的长为底面周长,宽为高;
2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征 :圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
6、圆柱的相关计算公式:
底面积 :S底=πr²
底面周长:C底=πd=2πr
侧面积 :S侧=2πrh
表面积 :S表=2S底+S侧=2πr²+2πrh
体积 :V柱=πr²h
第四单元 比例
1、比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类
(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
13、图上距离:
图上距离/实际距离=比例尺
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤:
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例)
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×工作时间=工作总量
18、已知图上距离和实际距离可以求比例尺。
已知比例尺和图上距离可以求实际距离。
已知比例尺和实际距离可以求图上距离。
计算时图距和实距单位必须统一。
19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
答:每天播种的公顷数×天数=播种的总公顷数
已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。