作为一名老师,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么你有了解过教案吗?下面是人美心善的小编给家人们整编的10篇人教版八年级数学上册教案的相关内容,希望对大家有所帮助。
人教版八年级数学上册教案 篇一
一、创设情景,明确目标
多媒体展示:内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标
三角形的内角和
活动一:见教材P11“探究”。
展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理。
小组讨论:有没有不同的证明方法?
反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程。三角形三个内角的和等于180°.
针对训练:见《学生用书》相应部分
三角形内角和定理的应用
活动二:见教材P12例1
展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?
小组讨论:三角形的内角和在解题时,如何灵活应用?
反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的'度数时,可根据它们之间的关系列方程解决。
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1.本节学习的数学知识是:三角形的内角和是180°.
2.三角形内角和定理的证明思路是什么?
3.数学思想是转化、数形结合。
《三角形综合应用》精讲精练
1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )
A.5 B.6 C.7 D.10
3.下列五种说法:①三角形的三个内角中至少有两个锐角;
②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余。其中正确的说法有________(填序号).
《11.2与三角形有关的角》同步测试
4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状。为什么?
(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?
八年级上册数学教案人教版 篇二
1、理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
2、培养学生的分析能力和类推能力。
3、体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。
教学重难点
教学重点:理解并掌握除数是整数的小数除法的计算方法。
教学难点:理解商的小数点定位问题。
教学工具
ppt课件
教学过程
一、复习引入
1、填空:(ppt课件)
2、(ppt课件出示)
(1)引导学生列式:224÷4
(2)为什么这样列式?(路程÷时间=速度)
(3)说一说:224÷4这道题是怎样计算的?(教师板演)
【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。
二、探究新知
(一)教学例1
1、出示例1,引导理解题意。(ppt课件演示。)
(1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22.4 km。)
(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)
2、尝试列式,分析数量关系。
(1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或ppt课件演示:22.4÷4。)
(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)
3、揭示新课,感受学习价值。
(1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)
(2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,这节课我们就来研究新的课题──除数是整数的小数除法。
(3)板书课题:除数是整数的小数除法。
4、提出问题,自主思考算法。
(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?
(2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)
5、教师引导,交流不同算法。
(1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?
(2)指名学生回答。(教师ppt课件演示。)
(3)我们小数除法还可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。
(4)指导学生列出除法竖式。(教师板书)
6、交流两种算法和感受:
引导学生比较列竖式计算和将22.4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?(相同)哪种算法比较简便?(算法二计算过程比较麻烦,算法一比较简便。)
7、算一算,比一比。
(1)42÷3= 4.2÷3=
(2)学生独立计算,教师巡视。
(3)教师ppt课件演示。
(4)这两道题有哪些相同点和不同点?学生讨论,交流。
(相同点:整数除以整数与小数除以整数计算方法相同;不同点:小数除以整数要把商的小数点与被除数的小数点对齐。)
【设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。
(二)教学例2
1、出示例2。(ppt课件演示。)
2、引导学生理解题意,列出算式。(教师ppt课件演示:28÷16)
3、教师板演竖式计算过程,让学生明确算理和算法。(教师板书)
(1)除到被除数的末尾还有余数时,为什么可以添0继续除?
(2)“120”表示120个()分之一?除得的7为什么写在十分位上?
(3)“80”表示80个()分之一?除得的5为什么写在百分位上?
4、计算除数是整数的小数除法要注意什么?
(1)商的小数点要和被除数的小数点对齐;
(2)如果有余数,要添0再除。
(三)教学例3
1、出示例3。(ppt课件演示。)
2、引导学生理解题意,列出算式。(教师ppt课件演示:5.6÷7)
3、引导学生观察被除数和除数有什么特点?(被除数比除数小);商会出现什么情况?怎样商?(不够商1,用0占位)
4、让学生把题补充完整。
5、引导学生自己尝试验算。
(1)引导:要检验小数除法的计算结果是否正确,可以怎么办?
(2)学生自主验算。
(3)教师板演。
【设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,重点关注学生的数学思维发展,放手让学生探讨、交流,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。
三、智慧城堡
1、下面各题的商哪些是小于1的?在括号里画“√”
5.04÷6 76.5÷45 45÷36 0.84÷28
( ) ( ) ( ) ( )
(1)引导学生判断。
(2)引导学生想一想,什么情况下得到的商比1小?
2、
(1)引导学生判断对错。
(2)这道题的7应该商在哪位上?
3、
(1)引导学生理解题意。
(2)引导学生根据“一共花的钱÷分钟数=每分钟花的钱”的数量关系列式。
(3)学生列竖式计算,然后展台展示学生做题情况。
四、我的收获是……
引导学生说出这节课的收获。
(1) 按整数除法的方法去除。
(2) 商的小数点要和被除数的小数点对齐。
(3) 整数不够除,商0,点上小数点。如果有余数,要添0再除。
人教版八年级数学上册教案 篇三
知识目标:理解变量与函数的概念以及相互之间的关系
能力目标:增强对变量的理解
情感目标:渗透事物是运动的,运动是有规律的辨证思想
重点:变量与常量
难点:对变量的判断
教学媒体:多媒体电脑,绳圈
教学说明:本节渗透找变量之间的简单关系,试列简单关系式
教学设计:
引入:
信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?
信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.
t/m 1 2 3 4 5
s/km
新课:
问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的`关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;
(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:
1.分别指出下列各式中的常量与变量。
(1)圆的面积公式s=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.
2.写出下列问题的关系式,并指出不、常量和变量。
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式。
思考:怎样列变量之间的关系式?
小结:变量与常量
作业:阅读教材5页,11.1.2函数
八年级数学上册教案 篇四
教学目标:
1.使学生理解集合的含义,知道常用集合及其记法;
2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;
3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。
教学重点:
集合的含义及表示方法。
教学过程:
一、问题情境
1.情境
新生自我介绍:介绍家庭、原毕业学校、班级。
2.问题
在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生xx”相比,它们有什么共同的特征?
二、学生活动
1.介绍自己;
2.列举生活中的集合实例;
3.分析、概括各集合实例的共同特征。
三、数学建构
1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。构成集合的每一个个体都叫做集合的一个元素。
2.元素与集合的关系及符号表示:属于,不属于。
3.集合的表示方法:
另集合一般可用大写的拉丁字母简记为“集合A、集合B”。
4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R。
5.有限集,无限集与空集。
6.有关集合知识的历史简介。
四、数学运用
1.例题
例1 表示出下列集合:
(1)中国的直辖市;
(2)中国国旗上的颜色。
小结:集合的确定性和无序性
例2 准确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x<0的解集;
(3)不等式组 的解集;
(4)不等式组2x-1≤-33x+1≥0的解集。
小结:
(1)集合的`表示方法——列举法与描述法;
(2)集合的分类——有限集,无限集、空集。
例3 将下列用描述法表示的集合改为列举法表示:
(1){(x,)| x+ = 3,x N, N }
(2){(x,)| = x2-1,|x |≤2,x Z }
(3){| x+ = 3,x N, N }
(4){ x R | x3-2x2+x=0}
小结:常用数集的记法与作用。
例4 完成下列各题:
(1)若集合A={ x|ax+1=0}=,求实数a的值;
(2)若-3{ a-3,2a-1,a2-4},求实数a。
小结:集合与元素之间的关系。
2.练习:
(1)用列举法表示下列集合:
①{ x|x+1=0};
②{ x|x为15的正约数};
③{ x|x 为不大于10的正偶数};
④{(x,)|x+=2且x-2=4};
⑤{(x,)|x∈{1,2},∈{1,3}};
⑥{(x,)|3x+2=16,x∈N,∈N}。
(2)用描述法表示下列集合:
①奇数的集合;
②正偶数的集合;
③{1,4,7,10,13}
五、回顾小结
(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;
(2)集合的表示——列举法、描述法以及Venn图;
(3)集合的元素与元素的个数;
(4)常用数集的记法。
六、作业
课本第7页练习3,4两题。
八年级数学上册教案 篇五
学习目标:
1. 在同一直角坐标系中,感受点的坐标变化与图形的变化之间的关系,并能找出变化规律。
2. 通过坐标的变化探索新旧图形之间的变化。
重点:
1. 对称轴的对称图形,并且能写出所得图形各点的坐标。
2. 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点:
1. 理解并应用直角坐标与极坐标。
2. 解决一些简单的问题。
学习过程:
一、旧知回顾:
1. 平面直角坐标系定义:在平面内,两条垂直且有公共端点的数轴组成平面直角坐标系。
2. 坐标平面内点的坐标的表示方法是(x,y)。
3. 各象限点的坐标的特征:
第一象限:x和y坐标都是正数。第二象限:x坐标为负数,y坐标为正数。第三象限:x和y坐标都是负数。第四象限:x坐标为正数,y坐标为负数。
二、新知检索:
在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形。
三、典例分析:
例1、(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2) 将鱼的顶点的横坐标不变,纵坐标变成原来的一半,并绘制图形。分析得到的`图形和原图形之间有什么不同?
四、习题组训练
1、在平面直角坐标系中,将点(0,0)、(2,4)、(2,0)和(4,4)连接形成一个图案。
(1)将这四个点的纵坐标保持不变,横坐标变成原来的一半,然后依次连接得到新图形。得到的图形和原图形之间有什么变化?
(2)将纵坐标和横坐标都增加3,所得到的图形会发生怎样的变化?
(3)将纵坐标和横坐标都乘以2,所得到的图形会发生怎样的变化?
归纳得出:图形坐标变化的规律
1、平移规律
2、图形伸缩规律
人教版八年级数学上册教案 篇六
【学习目标】
1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。
2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。
【学习重点】
探索和掌握等腰三角形的性质及其应用。
【学习难点】
等腰三角形的性质的应用。
【学习 过程】
一、你知道吗?
等腰三角形的有关概念
《等腰三角形应用》讲义
课前预习
1.SAS,SSS,ASA,AAS,HL
2.这条线段的两个端点的距离相等
3.这个角的两边的距离相等
4.这样的点有4个
?知识点睛
1.线段垂直平分线上的点到这条线段的。两个端点的距离相等
2.角平分线上的点到这个角的两边距离相等
3.顶角的平分线 底边上的中线 底边上的高 三线合一
《13.3等腰三角形》专项练习
1、填空题
2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。
人教版八年级数学上册教案 篇七
一、教学目标
知识与技能
1、了解立方根的概念,初步学会用根号表示一个数的立方根。
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根。
过程与方法
1让学生体会一个数的立方根的惟一性。
2培养学生用类比的思想求立方根的能力,体会立方与开立方运算的互逆性,渗透数学的转化思想。
情感态度与价值观
通过立方根符号的引入体会数学的简洁美。
二、重点难点
重点
立方根的。概念和求法。
难点
立方根与平方根的区别,立方根的求法
三、学情分析
前面已经学过了平方根的知识,由于平方根与立方根的学习有很多相似之处,所以在教学设计上,主要还是采取类比的思想,在全面回顾平方根的基础上,再来引导学生进行立方根知识的学习,让学生感觉到其实立方根知识并不难,可以与平方根知识对比着学,这样可以克服学生学习新知识的陌生心理。在学习方法上,提倡让学生在反思中学习,在概念的得出,归纳性质,解题之后都要进行适当的反思,在反思中看待与理解新知识和新问题,会更理性和全面,会有更大的进步。
四、教学过程设计
教学环节问题设计师生活动备注
情境创设问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.
因为=27,所以x=3.即这种包装箱的边长应为3m
归纳:
立方根的概念:
创设问题情境,引起学生学习的兴趣,经小组讨论后引出概念。
通过具体问题得出立方根的概念
探究一:
根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?
因为(),所以0.125的立方根是()
因为(),所以-8的立方根是()
因为(),所以-0.125的立方根是()
因为(),所以0的立方根是()
一个正数有一个正的立方根
0有一个立方根,是它本身
一个负数有一个负的立方根
任何数都有唯一的立方根
【总结归纳】
一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。.
探究二:
因为所以=
因为,所以=总结:
利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
人教版八年级数学上册教案 篇八
教学目标
1.掌握等边三角形的性质和判定方法。 2.培养分析问题、解决问题的能力。
教学重点:
等边三角形的性质和判定方法。
教学难点:
等边三角形性质的`应用
教学过程
I、创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴。
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形。
4.有一个角是60°的等腰三角形是等边三角形。
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法。
II、例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上。
③过边AB上D点作DE∥BC,交边AC于E点。
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小。
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3. P56页练习1、2
III、课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业:1.P58页习题12.3第ll题。
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形。这样的点有多少个?
八年级数学上册教案 篇九
【教学目标】
知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然〈WWW.JIAOXUELA.COM〉后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
二、范例学习,应用所学
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
人教版八年级数学上册教案 篇十
教学目标:
理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.
教学重点与难点:
正确理解同底数幂的'乘法法则以及适用范围.
教学过程:
一、回顾幂的相关知识
an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
二、创设情境,感觉新知
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
学生分析,总结结果
1012×103=()×(10×10×10)==1015.
通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
学生动手:
计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)
教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.
得到结论:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加
三、小结:
同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.
注意两点:
一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n