初中二元一次方程数学教案范文一:二元一次方程组——鸡兔同笼下面快回答为大家整理了6篇一次函数与二元一次方程课教学设计,希望可以帮助您更好的写作二元一次方程。
二元一次方程组 篇一
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男*各几人吗?为什么?
(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比*多了2人。设男生x人,*y人。方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人。设该班男生x人,*y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
【二元一次方程教案范文3篇】相关推荐文章:
2022初中语文优秀教师教案范文-语文优秀教案模板范文
标准教案范文精选
元一次方程公开课教案 篇二
【教学目标】
【知识目标】
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】
二元一次方程组的含义
【难点】
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次
练习(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、议一议、
师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?
师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成
x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?
2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5
y=2y=3
也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,
y=3
四、随堂练习(P103)
五、小结:
1、含有两未知数,并且含有未知数的项的。次数是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
应用二元一次方程组——鸡兔同笼 篇三
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识。
2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只。
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只。
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15
2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
三、合作探究
探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?
题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙。设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系.
设:设未知数.
列:根据等量关系,列出方程组.
解:解方程组,求出未知数.
答:检验所求出未知数是否符合题意,写出答案.
四、自主思考
探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?
解:设做竖式纸盒X个,横式纸盒y个。根据题意,得
x+2y=1000
4x+3y=2000
解这个方程组得x=200
y=400
答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。
练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?
解:设做竖式纸盒x个,做横式纸盒y个,根据题意
y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完.
归纳:
五、达标测评
1.解下列应用题
(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
解:设4分邮票x张,8分邮票y张,由题意得:
4x+8y=6800①
y-x=40②
所以,4分邮票540张,8分邮票580张
(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成
分析:由于工作总量未知,我们将其设为单位1
晴天一天可完成
雨天一天可完成
解:设晴天x天,雨天y天,工作总量为单位1,由题意得:
总天数:7+10=17
所以,共17天可完成任务
六、应用提高
学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?
分析:铅笔数量+圆珠笔数量+钢笔数量=232
铅笔数量=圆珠笔数量×4
铅笔价格+圆珠笔价格+钢笔价格=300
解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:
将②代入①和③中,得二元一次方程组
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,铅笔175支,圆珠笔44支,钢笔12支
七、体验收获
1.解决鸡兔同笼问题
2.解决以绳测井问题
3.解应用题的一般步骤
七、布置作业
教材116页习题第2、3题。
x+y=35
2x+4y=94
x=23
y=12
绳长的三分之一-井深=5
绳长的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
X=540
Y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
X=176
Y=44
Z=12
元一次方程公开课教案 篇四
教学建议
一、重点、难点分析
本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.
解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.
二、知识结构
三、教法建议
1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调
这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.
2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.
3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.
一、素质教育目标
(一)知识教学点
1.掌握用代入法解二元一次方程组的步骤.
2.熟练运用代入法解简单的二元一次方程组.
(二)能力训练点
1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.
2.训练学生的'运算技巧,养成检验的习惯.
(三)德育渗透点
消元,化未知为已知的数学思想.
(四)美育渗透点
通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.
二、学法引导
1.教学方法:引导发现法、练习法,尝试指导法.
2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.
三、重点、难点、疑点及解决办法
(-)重点
使学生会用代入法解二元一次方程组.
(二)难点
灵活运用代入法的技巧.
(三)疑点
如何“消元”,把“二元”转化为“一元”.
(四)解决办法
一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:
四、课时安排
一课时.
五、教具学具准备
电脑或投影仪、自制胶片.
六、师生互动活动设计
1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.
2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.
3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.
七、教学步骤
(-)明确目标
本节课我们将学习用代入法求二元一次方程组的解.
(二)整体感知
从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.
(三)教学步骤
1.创设情境,复习导入
(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.
(2)选择题:
二元一次方程组 的解是
A. B. C. D.
第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.
通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.
这样导入,可以激发学生的求知欲.
2.探索新知,讲授新课
香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?
学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.
设买了香蕉 千克,那么苹果买了 千克,根据题意,得
设买了香蕉 千克,买了苹果 千克,得
上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.
上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?
学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.
例1 解方程组
(1)观察上面的方程组,应该如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .
(3)求出 后代入哪个方程中求 比较简单?(①)
学生活动:依次回答问题后,教师板书
解:把①代入②,得
∴
把 代入①,得
∴
如何检验得到的结果是否正确?
学生活动:口答检验.
教师:要把所得结果分别代入原方程组的每一个方程中.
给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.
例2 解方程组
要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.
学生活动:尝试完成例2.
教师巡视指导,发现并纠正学生的问题,把书写过程规范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
检验后,师生共同讨论:
(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)
学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.
教师板书:
(1)变形( )
(2)代入消元( )
(3)解一元一次方程得( )
(4)把 代入 求解
练习:P13 1.(1)(2);P14 2.(1)(2).
3.变式训练,培养能力
①由 可以得到用 表示 .
②在 中,当 时, ;当 时, ,则 ; .
③选择:若 是方程组 的解,则( )
A. B. C. D.
(四)总结、扩展
1.解二元一次方程组的思想:
2.用代入法解二元一次方程组的步骤.
3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.
通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.
八、布置作业
(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).
(二)选做题:P15 B组1.
元一次方程公开课教案 篇五
教学目标
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法。
过程与方法
(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
情感与态度
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
教学难点
数形结合和数学转化的思想意识。
教学准备
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
教学过程
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:
1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)
内容:
1.已知一次函数与的图像的交点为,则。
2.已知一次函数与的图像都经过点A(—2,0),且与轴分别交于B,C两点,则的面积为()。
(A)4(B)5(C)6(D)7
3.求两条直线与和轴所围成的三角形面积。
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的。图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置
习题7.7A组(优等生)1、2、3B组(中等生)1、2C组1、2
元一次方程公开课教案 篇六
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的'解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。
四、教学设计反思
1、贯穿一个原则——以学生为主体的原则
2、突出一个思想——数形结合的思想
3、体现一个价值——数学建模的价值
4、渗透一个意识——应用数学的意识
他山之石,可以攻玉。上面这6篇一次函数与二元一次方程课教学设计就是快回答为您整理的二元一次方程范文模板,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。