1. 主页 > 知识大全 >

解一元一次方程教学教案9篇(一元一次方程的解法优质课)

作为一位不辞辛劳的人民教师,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写呢?下面的9篇解一元一次方程教学教案是由快回答精心整理的一元一次方程范文模板,欢迎阅读参考。

《解一元一次方程》教案 篇一

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的'工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

元一次方程 篇二

一元一次方程教学反思范文一:

义务教育课程标准实验教科书(人教版)的七年级数学上册的第二章《一元一次方程》,其主要学习目标为:1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型。2、了解解方程的基本目标,熟悉一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴含的化归思想。3、能够“找出实际问题中的已知数和δ知数,分析它们之间的关系,设δ知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。显而易见,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点和难点。

新课程标准教材不仅考虑数学自身的特点,还遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

本教科书是以一元一次方程的解法为主线,χ绕合并、移项、去分母、去括号几大步骤依次展开的,并把解决各种实际问题也逐一分散到这四大类型中,这样看起来,线索明朗,难点分散,有利于减轻学生的学习负担,其实不然,教学实践证明一元一次方程的解法,对学生来说并不很难,除了由于不细心造成符号错误,去分母©项问题,教学中并û有遇到多大阻碍,而对于利用一元一次方程去解决实际问题则是学生最感头痛之处。如何理清问题中的基本数量,如何找出相等关系列方程,往往使学生们抓耳挠腮,束手无策。所以像本章的知识显得系统性不强,不利于师生的引生的引导和探索,难以让学生体会建立数学模型的思想,不利于提高分析问题、解决问题的能力。

我在教学中认识到这一点,就在七年级两个班中进行对比实验:(1)班按照新课程标准教材编排顺序进行教学,(2)班则打破编排顺序,先集中学习一元一次方程的解法,然后再讨论其应用。并把实际问题按照问题情景进行分类:和(差)倍问题、工程问题、行程问题、浓度问题、等积变形问题、销售中的盈亏问题、商品打折问题、利率问题、方案设计问题等,引导学生探索ÿ类问题的本质,探究其内在联系,构建模型。

本章学习结束后,我们分别对一元一次方程的解法和应用进行对比测试。测试结果表明:对一元一次方程的解法,两种教学方式的效果相关无几,而对利用一元一次方程解决实际问题,两种教学方式的效果则有较大差异,打破教材编排顺序进行教学的(2)班成绩明显高于(1)班。按照标准教材编排进行教学,强调把握全部问题的通性通法,而七年级学校的学生大多数对此感觉难以理解和把握。(1)班学生大多反映解决实际问题时思·不清晰,对于不同的问题不知如何区别对待,而(2)班学生则反映遇到不同的实际问题,脑海中马上就显现出此类问题的通性通法,解决起来有章可循,真正体现建立数学模型的思想。

由此可见,教材ÿ一个问题情景的创设,ÿ一个知识篇章的教学模式的设计,是否具有科学性和有效性,是否适合各个地方各个层次的学生的学习心理特征,有待在教学实践中进一步的探索和研究。因此,我认为在此课程中,教学不是教“教科书”,而是经由“教科书”来教,即教科书不再是不可触犯的“圣经”,而是教学活动的参考依据,是教学活动展开的一种文本和载法。所以教师不能只执行教材,而应根据学生现有的知识基础,灵活地、创造性地利用教材,并且在课堂实施中根据学生的情况,灵活地调整并生成新的教学流程,使课堂处于不断的动态变化之中,这样才符合新课程的要求。

一元一次方程教学反思范文二:

方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

《解一元一次方程》教案 篇三

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的`人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

初中七年级上册数学《解一元一次方程》教案优质 篇四

教学目的和要求:

1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

教学工具和方法:

工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

2.问题:[

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

[来源:学#科#网]

二、讲授新课:

1.发现、总结(分类):

我们必须把问题说得明确些,并规定向东为正,向西为负。

(同号两数相加法则)

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,

写成算式就是: (―20)+(―30)=―50。

(师生共同归纳同号两数相加法则:[来源:Z+··+]

同号两数相加,取相同的符号,并把绝对值相加)

(异号两数相加法则)

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

你能发现和与两个加数的符号和绝对值之间有什么关系吗?

(+4)+(―3)=( ); (+3)+(―10)=( );

(―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:

(5)第一次向西走了30米,第二次向东走了30米。写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走。写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

(师生共同归纳异号两数相加法则:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

(互为相反数的两数相加为零

问题:会不会出现和为0的情况?

(5)第一次向西走了30米,第二次向东走了30米。写成算式是:(―30)+(+30)= ( )。

师生共同归纳法则3:互为相反数的两数相加得0)

问题:你能有法则来解释法则3吗?

学生回答:可以用异号两数相加的法则)

((6)第一次向西走了30米,第二次没走。写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

一般地,一个数同0相加,仍得这个数)

2.概括:

综合以上情形,我们得到有理数的加法法则:

(1) 同号两数相加,取相同的符号,并把绝对值相加;

(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3) 互为相反数的两个数相加得0;

(4)一个数同0相加,仍得这个数。

注意:

一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值。这与小学阶段学习加法运算不同。

3.例题:

例:计算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式= +(4.3―3.4)=0.9。

4.五分钟测试:

计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、课堂小结:

这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则。今后我们经常要用类似的思想方法研究其他问题。

应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

(运算的关键:先分类,在按法则运算

运算步骤:先确定符号,再计算绝对值

注意问题:要借助数轴来进一步验证有理数的加法法则)

四、课堂作业:

课本:P18:1,2,3。

板书设计:

教学后记:

初中七年级上册数学《解一元一次方程》教案优质 篇五

教学目标

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系。

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力。

(2)经历问题解决的过程,提高解决问题的能力。

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

重、难点与关键

1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点。

2.难点:立体图形与平面图形之间的转化是难点。

3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键。

教具准备

长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图

教学过程

一、引入新课

1.打开课本,看第117页城市的现代化建筑,学生认真观看。

2.提出问题:有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验。

2.指定一名学生回答问题,并能正确说出这些几何图形的名称。 学生回答:有圆柱、长方体、正方体等等。

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。

3.立体图形的概念。

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用教学挂图展示图4.1-4

(4)提出问题:在挂图中中,包含哪些简单的平面图形?

(5)探索解决问题的方法。

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。

4.平面图形的概念。

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。

5.立体图形和平面图形的转化。

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看。

(2)提出问题。

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决问题的方法。

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。

②进行小组交流,评价各自获得的结论,得出正确结论。 ③指定三名学生,板书画出的图形。

6.思考并动手操作。

初中七年级上册数学《解一元一次方程》教案优质 篇六

第1课时 认识立体图形与平面图形

教学目标

1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;

2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥。

教学过程

一、情境导入

观察实物及欣赏图片:

我们生活在一个图形的世界中,图形世界是多姿多彩的。其中蕴含着大量的几何图形。本节我们就来研究图形问题。

二、合作探究

探究点一:立体图形

【类型一】 从实物图中抽象立体图形的认识

例1 观察下列实物模型,其形状是圆柱体的是(  )

解析:圆柱的上下底面都是圆,所以正确的是D.

方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

【类型二】 立体图形的名称与分类

例2 如图所示为8个立体图形。

其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.

解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.

方法总结:正确理解立体图形的定义是解题的关键。

探究点二:平面图形的认识

【类型一】 平面图形的识别

例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为(  )

A.5个 B.4个

C.3个 D.2个

解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形。故选B.

方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内。

【类型二】 由平面图形组成的图形

例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?

解:(1)由5个图形组成;

(2)由2个正方形和1个长方形组成;

(3)由3个四边形组成。

方法总结:解决这类问题的关键是正确区分图形的形状和名称。

三、板书设计

1.立体图形

特征:几何图形的各部分不都在同一平面内。

2.平面图形

特征:几何图形的各部分都在同一平面内。

教学反思

本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性。使学生以最佳状态投入到学习中去。通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识。使学生在讨论交流的基础上总结出立体图形和平面图形的特征。

第2课时 从不同的方向看立体图形和立体图形的展开图

教学目标

1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;

2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形。(重点,难点)

教学过程

一、情境导入

《题西林壁》

苏东坡

横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?

二、合作探究

探究点一:从不同的方向观察立体图形

【类型一】 判断从不同的方向看到的图形

例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是(  )

解析:从上面看依然可得到两个半圆的组合图形。故选D.

方法总结:本题考查了从不同的方向观察物体。在解题时要注意,看不见的线画成虚线,看得见的线画成实线。

【类型二】 画从不同的方向看到的图形

例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形。

解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形。

解:如图所示:

方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线。在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等。

《解一元一次方程》教案 篇七

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的`解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

P102:3,10.

元一次方程 篇八

教学目标

1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:

(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:

(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法

启发式教学和讨论式教学相结合

教学手段

多媒体

教学过程

(一)复习提问

提出问题:

1.什么是一元一次方程?

在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.

2.解一元一次方程的步骤是什么?

答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课

提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).

让学生讨论:

(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)

(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。)

强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课

1.含有字母系数的一元一次方程的定义

ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

2.含有字母系数的一元一次方程的解法

教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:

ax=b(a≠0).

由学生讨论这个解法的思路对不对,解的过程对不对?

在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。

含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同。(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤。)

特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零。

3.讲解例题

例1 解方程ax+b2=bx+a2(a≠b).

解:移项,得 ax-bx=a2-b2,

合并同类项,得(a-b)x=a2-b2.

∵a≠b,∴a-b≠0.

x=a+b.

注意:

1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数。

2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).

3.方程的解是分式形式时,一般要化成最简分式或整式。

例2、解方程

分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.

解:b(x-b)=2ab-a(x-a)(a+b≠0).

bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母。)

ba+ax=a2+2ab+b2

(a+b)x=(a+b)2.

∵a+b≠0,

∴x=a+b.

(四)课堂练习

解下列方程:

教材P.90.练习题1—4.

补充练习:

5.a2(x+b)=b2(x+a)(a2≠b2).

解:a2x+a2b=b2x+ab2

(a2-b2)x=ab(b-a).

∵a2≠b2,∴a2-b2≠0

解:2x(a-3)-(a+2)(a-3)=x(a+2)

(a-b)x=(a+2)(a-3).

∵a≠8,∴a-8≠0

(五)小结

1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系。

2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同。但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零。

六、布置作业

教材P.93.A组1—6;B组1、

注意:A组第6题要给些提示。

七、板书设计

探究活动

a=bc 型数量关系

问题引入:

问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)

提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。

1、由学生讨论,得出结论。

2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总

长度为b,单位长度的质量为c,a,b,c之间有什么关系?

由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量 ,再称

出其余电线的总质量 ,则 (米)是其余电线的长度,所以这捆电线的总长度为( )米。

引出可题:探究活动:a=bc型数量关系。

1、b、c之一为定值时。

读课本P.96—P.97并填表1和表2中发现a=bc型数量关系有什么规律和特点?

(1)分析表1

表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比

较:宽c=1,长由2变为4。

面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。

得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。

(2)分析表2

(1)表2从理论上证明了对表1的分析的结果。

(2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)

(3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是

我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。

2、为定值时

读书P.98—P.99,填P.99空,自己试着分析数据,看到出什么结论?

分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。

可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。

这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。

3、实际问题中,常见的a=bc型数量关系。

(1)总价=单价×货物数量;

(2)利息=利率×本金;

(3)路程=速度×时间;

(4)工作量=效率×时间;

(5)质量=密度×体积。

…例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。

策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。

解:y=2n

总结:本题考查a=bc型关系式,解题关键是弄清数量关系。

例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。

解:s=30t

例3、一种储蓄的年利率为2.25%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。

解:y=2.25%x

元一次方程 篇九

2.2从古老的代数书说起---一元一次方程的讨论(1)

【教学目标】1.经历运用方程解决实际问题的过程;2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.通过具体的例子感受一些常用的相等关系式。【对话探索设计】〖探索1〗(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?解:设前年购买计算机x台,那么,设计(1)是让学生感受列代数式是列方程的基础。去年购买的计算机的数量是________;今年购买的计算机的数量是________;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:____________________________.合并得________________.系数化为1得______________.答:______________________.归纳:总量等于各部分量的和是一个基本的相等关系。〖探索2〗(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本。(2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本。(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本。这个班有多少学生?解: 设这个班级有x名学生,根据第一关系,这批书共_________________本;根据第二关系,这批书共_________________本;这批书的总数是个定值,表示它的两个不同的式子应该相等。熟悉这些关系有助于列方程。根据这一相等关系列得方程:________________________.想一想,怎样解这个方程?归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系。〖练习〗1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨。(2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨。每块地各用水多少吨?解:设第二块地(漫灌)用水x吨,根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量×25%),得第一块地(喷灌)用水________吨。根据关系: 两块地共用水300吨,可列方程:__________________________________.解得___________.答:___________________________.〖作业〗p79.练习,p84.1,6〖补充作业〗1.按要求列出方程:(1)x的1.2倍等于36; (2)y的四分之一比y的2倍大24.2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量。解:设前年的产量是x吨,根据关系: 去年的产量是前年的2倍还多150吨,得去年的产量为______________,根据去年的产量是950吨列方程:__________________ .解得___________.答_________________________.

只要功夫深,铁杵磨成针。上面的9篇解一元一次方程教学教案是由快回答精心整理的一元一次方程范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。