总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们一起来学习写总结吧。你所见过的总结应该是什么样的?快回答分享了14篇八年级数学下册教案,希望对于您更好的写作八年级下册数学有一定的参考作用。
初二下册数学教学计划 篇一
一、基本情况分析
任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
二、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
三、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的`好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
四、教研课题
高中数学新课程新教法
五、教学进度
第一周 集 合
第二周 函数及其表示
第三周 函数的基本性质
第四周 指数函数
第五周 对数函数
第六周 幂函数
第七周 函数与方程
第八周 函数的应用
第九周 期中考试
第十十一周 空间几何体
第十二周 点,直线,面之间的位置关系
第十三十四周 直线与平面平行与垂直的判定与性质
第十五十六周 直线与方程
第十八十九周 圆与方程
第二十周 期末考试
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
人教版八年级数学下册教案 篇二
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势。
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
人教版八年级数学下册教案 篇三
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;
3、使学生能够利用最简公分母进行验根.
可化为一元二次方程的分式方程的解法.
教学难点:解分式方程,学生不容易理解为什么必须进行检验.
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的'分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.
人教版八年级数学下册教案 篇四
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法。
2.会综合运用平行四边形的判定方法和性质来解决问题
平行四边形的判定方法及应用
:平行四边形的判定定理与性质定理的灵活应用
小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
阅读教材p44至p45
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的。探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
人教版八年级数学下册教案 篇五
1、掌握一次函数解析式的特点及意义
2、知道一次函数与正比例函数的关系
3、理解一次函数图象特点与解析式的联系规律
1、 一次函数解析式特点
2、 一次函数图象特征与解析式的联系规律
1、一次函数与正比例函数关系
2、根据已知信息写出一次函数的表达式。
ⅰ.提出问题,创设情境
问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.
分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
ⅱ.导入新课
上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称
y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
a、①②③b、①③④ c、①②③④ d、②③④
例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.
解 (1)a?20,不是一次函数. h
(2)l=2b+16,l是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
(5)y=60x,y是x的一次函数,也是x的正比例函数;
(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;
(7)y=50+2x,y是x的一次函数,但不是x的正比例函数
例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例4 已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解 (1)因为 y与x-3成正比例,所以y=k(x-3).
又因为x=4时,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
1. 2
例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y(千米).
(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.
(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.
分析 (1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.
(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.
分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解 在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
ⅲ.随堂练习
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。
(1)写出每月用水量不
超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
ⅳ.课时小结
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
ⅴ.课后作业
1、已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数q与星期数t之间的函数关系.
4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
人教版八年级数学下册全册教案 篇六
因式分解
1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3.公因式的确定:系数的公约数?相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式。
人教版八年级数学下册教案 篇七
一、知识目标
经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
二、能力目标
知道分时方程的意义,会解可化为一元一次方程的分式方程。
三、情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。
一、课前预习与导学
1.什么叫做分式方程?解分式方程的步骤有哪几步?
2.判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:=3-
解:两边同乘以(x-1),得
2=3-x=1,①
x=3+1-2,②
所以x=2.③
(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)
3.解下列分式方程:(1)=(2)+=2.
二、新课
(一)情境创设:
1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?
设甲每天加工服装多少件,可得方程:
2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的。相等关系?
设这个两位数的十位数字是x,可得方程:
3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?
设自行车的速度为xkm/h,可得方程:
(二)探索活动:
1.上面所得到的方程有什么共同特点?
2.这些方程与整式方程有什么区别?
结论:分母中含有未知数的方程叫做分式方程。
3.如何解分式方程=?
解:这个分式方程的两边同乘各分式的最简公分母x(x+1),
可以得到一元一次方程:20(x+1)=24x
解这个方程,得
x=5
为了判断x=5是否是原方程的解,我们把x=5代入原方程:
左边==4,右边==4,左边=右边。{WWW.JIAOXUELA.COM}
x=5是原方程的解。
说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。
三、例题教学:
例1.解方程:-=0
板书出解分式方程的一般过程及完整的书写格式。
解:方程两边同乘x(x-2),得
3(x-2)-2x=0
解这个方程,得
x=6
把x=6代入原方程:左边=右边=0,左边=右边。
x=6是原方程的解。
四、课堂练习:
1.下列各式中,分式方程是()
a.b.c.d.
2.分式方程解的情况是()
a.有解,b.有解c.有解,d.无解
3.解下列方程:
4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。
人教版八年级数学下册教案 篇八
1.理解掌握分式的四则混合运算的顺序。
2.能正确熟练地进行分式的加、减、乘、除混合运算。
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
【例1】计算:(1)[++(+)]·;
(2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】计算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
(2)原式=[-]。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的。运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
知识点:求分式的值
【例】已知x+=3,求下列各式的值:
7年级下册数学课件 篇九
3年级数学课件下册
1.位置:所在或所占的地方。
2.方向:指东,西,南,北等方位。
3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
4.除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
7.被除数、除数、商的关系:
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的'小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
10.没有括号的混合运算:
同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
11.第一级运算:加法和减法叫做第一级运算。
12.第二级运算:乘法和除法叫做第二级运算。
13.数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
14.数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
15.数据分析的步骤和应用:
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
16.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
17.二十四时计时法
(1)分段计时法(十二时计时法):深夜12时是一日的开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。
(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:00.
18.乘法算式中各数的名称
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数)×(乘号)200(因数)=(等于号)2000(积)
19.乘法的运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
(1)乘法交换律:a×b=b×a
(2)乘法结合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
20.乘法表
21.面积:物体的表面—平面图形的大小,叫做它们的面积
22.常用的面积单位有平方厘米、平方分米和平方米。
(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
23.一般测量较大的面积用到公顷和平方千米。
(1)边长是100米的正方形,面积是1公顷。
(2)边长是1千米的正方形,面积是1平方千米。
24.面积计算方法
长方形:S=ab{长方形面积=长×宽}
正方形:S=a2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}
25.面积计量单位及进率:
1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)
1公顷=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
26.公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。
27.小数:小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。
28.小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
29.小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
30.小数的读法:
(1)按照分数的读法来读。带小数的整数部分按整数读法读;小数部分按分数读法读。
例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。
(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.
例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。
人教版八年级数学下册教案 篇十
1.类比分数的乘除运算探索分式的乘除运算法则。
2.会进行简单分式的乘除运算。
3.能解决一些与分式乘除运算有关的简单的实际问题。
4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。数学生活化,学好数学,为幸福人生奠基。
本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。分式是分数的“代数化”,与分数的约分、分数的。乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。
八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。采用自主学习与合作学习相结合的学习方式,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想,逐步形成科学的数学价值观。
教学重点:分式的乘除运算法则的理解与运用
教学难点:分子、分母是多项式的分式的乘除法的运算
(一)、创设情境,引入新课
活动1:课前三分钟
学生主持:请同学们根据我的描述猜一个人物?…
生:鲁班
学生主持:根据小草的构造鲁班发明了锯子,鲁班运用了什么思想方法?
生:类比
这个小故事让我们认识到类比的重要性,前面我们类比分数研究了分式的基本性质。今天,我们就来类比分数的乘除研究5.2分式的乘除法。
【设计意图】:让学生观察图片,不但可以体会到数学来源于生活,唤起学生对数学的热爱,激发学生学习的兴趣,为类比分数乘除探索分式乘除法则打下基础。
(二)、合作学习,共探新知
活动2:预习反馈,探索法则
问题:口答:
猜一猜
师生共同归纳分式的乘除法法则,这里运用了什么数学思想?类比、转化数学思想
【设计意图】让学生类通过类比→观察猜想→-归纳明晰→-得出结论。通过类比分数的乘除法则总结分式的乘除法法则。
例题讲解,师生共同完成。
注意:1.分式乘除法的实质是约分化简。
2.结果是最简分式或整式。
单项式 → 约分
分子、分母 分类
多项式 → 分解因式,约分
开心练习:
学生板演,小组代表在小白板上答题,其余同学在学案上完成。
【设计意图】:运用“兵教兵”教学方式,让学生通过充分交流,自学已会的学生教还不会的学生教师尽可能少讲,确保学生的学习时间,提高课堂效率。
活动3:活学活用
炎热的夏天到了,如果能吃到甘甜的西瓜是多么惬意啊。你会买西瓜吗?让我们跟随咱班的两名同学看看她们是如何买西瓜的?
播放学生买西瓜视频。
问题:假如我们把西瓜都看成是球形,半径为r,并把西瓜瓤的密度看成是均匀的,西瓜皮厚都是xcm,,怎样买西瓜合算?
先猜一猜,再算一算。
链接几何画板:观察体积比的变化。
变式:若西瓜的体积不变,是买皮厚的还是皮薄的西瓜?(几何画板演示)
【设计意图】:将问题生活化,让同学们帮助解决问题,激发学生的求知欲,渗透数感和几何直观,巧妙的利用几何画板将问题动起来,生动直观。变式训练,让学生学会举一反三。
(三)、跟踪训练,分层达标
1.利用慧学云交互平台,进行选择题的跟踪训练。
学生在规定的时间内答题,师现场根据答题结果统计,进行有针对性的讲解。学生充当小老师,教师予以补充。
2.智力冲浪
(1)下面的计算对吗?如果不对,应该怎样改正?
(2)计算
(4)计算
【设计意图】:设置梯度训练题,学生砸蛋抢答问题,巩固本节课的知识点,检验学生的掌握程度。
(四)、归纳小结,形成体系
我们这节课都学习了哪些知识? 你有哪些收获呀?那我们用到哪些数学思想?由学生归纳本节课的内容,并相互补充。
【设计意图】:构建知识思维导图,在知识树上进行梳理知识,生动直观。
类比的学习方法是学习新知识的好方法,让我们细心观察,一起研究有趣的数学吧!
(六)、布置作业,拓展延伸
必做题:p116页1题 2题
思维拓展:
初二下册数学教学计划 第十一篇
一、总的情况
执教高三、两个理科班,总人数x人。xx班学习习惯不好,边缘生特别多;优生少且普遍基础不好,习惯差,学习主动性不强;xx班一些学生成绩极不稳定,xx班培尖任务艰巨。
二、指导思想
研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
三、教学设想
㈠总的原则
1、认真研读数学考试大纲及xx省考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意信息。根据样卷把握第二、三轮复习的整体难度。
2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。
3、立足基础,不做数学考试大纲以外的东西。
精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
㈡。体现数学学科特点,注重知识能力的提高,提升综合解题能力
1、加强解题教学,使学生在解题探究中提高能力。
2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。
不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。
㈢合理安排复习中讲、练、评、辅的时间
1、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”
2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果
3、注重实效,努力提高复习教学的效率和效益
㈣改变传统复习模式,体现小组交流合作
1、淡化各自为战,加强备课小组交流合作,资源共享。
2、坚持学生主题,教师主导。
3、更新教学手段,提高复习效率
(1)用电脑多媒体技术辅助数学复习教学,提高课堂教学效率。
(2)利用电脑课件和积件,突破教学难点。
4。注重学法指导及心理辅导
(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。
(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。
(3)加强边缘生的个别辅导。A类边缘生采用各个击破,B类边缘生抓基础,促能力,A类边缘生注意备课组集体研究,个别指导;B类边缘生手把手的教,主要课堂重点关注,课后重点辅导。
四、教学重点
1、数学思想方法
2、教材的重点、高考的热点
3、依据新大纲、夯实基础,突出新增内容,新课程增加内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。
4、注意以单元块的纵向复习为主到综合性横向发展为主。
从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。
注意知识的交叉点和结合点。
五、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持集体备课,加强学习,多听课,探索第二轮复习的教学模式。
3、脚踏实地抓落实
(1)当日内容,当日消化,加强每天必要的练习检查督促。
(2)坚持每周一次小题训练,每周一次综合训练。
(3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
① 注意研究高考考试说明,及20xx年高考试题,特别是湖南省的高考试题。我们要想尽一切办法,搞到长沙市的考试试题,特别是平时的练习题,进行研究。
②在综合练习中,不缩小考试难度,既注意重点知识的考查,注重对数学思想和方法的考查。
③在综合练习中注意实践能力的考查,要求学生能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明。
④在综合练习中注意创新意识的考查:要求学生能对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。
⑤在综合练习中注意个性品质要求的考查:要求学生能具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
4、加强备课组的协作,发挥集体智慧
各备课组成员要心往一处想,劲往一处使,针对复习中存在的突出问题,加强集体备课,共同研究寻找对策,加强互相交流,互相学习,精选好每一次周练,精心筛选各类高考信息,加强研究讨论,加强合作,发挥每一位老师的特长。
5、加强应试心理的指导
为学生减压,开启他们心灵之窗,使他们保持最佳状态。
6、高考数学试卷上的题与我们平日练习的题目不一样,怎么办?复习时应注意什么?
(1)力求作到“三个避免”
避免需要死记硬背的内容; 避免呆板的试题;避免繁琐的计算。
(2)“用学过的知识解决没有见过的问题”。利用已有的知识内容、思想方法和基本能力,自己去研究试题所提供的新素材,分析试题所创设的新情况,找出已知和未知间的联系,重新组织若干已有的规则,形成新的高级规则,尝试解决试题所确立的新问题。
7、对重点知识与重点方法要真正理解,并且理解准、透。如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;全面准确把握好所用概念的前提条件;熟练掌握表示有关概念的字符、记号。
8、加强学法指导
在教学中要让学生明白:
第二轮复习,通常称为“方法篇”。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、数形结合、分类讨论”等方法解决一类问题、一系列问题。同学们应做到:
①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。
②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。
③从现在开始,解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家务必将解题过程写得层次分明,结构完整。
④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:
①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。
②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。
③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
最后,就是冲刺阶段,也称为“备考篇”。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:
①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。
②抓思维易错点,注重典型题型。
③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。
④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。
⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考
六、目标承诺
1、毕业会考通过率不低于95%。
2、高考数学成绩不拖后腿。
3、高考人平分在重点学排名不低
人教版八年级数学下册教案 第十二篇
1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。
验根的方法。分式方程增根产生的'原因。
小黑板。
复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?
(1);(2);(3);(4);
(5);(6);(7);(8)。
讲授新课:
1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。
2.讨论分式方程的解法:
(1)复习解方程时,怎样去分母?
(2)讲解例1:解方程(按课文讲解)
归纳:解分式方程的基本思想:
分式方程整式方程
(3)讲解例2:解方程(按课文讲解)
归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。
想一想:产生增根的原因是什么?
巩固练习:p1451t,2t。
课堂小结:什么叫做分式方程?
解分式方程时,为什么要检验?怎样检验?
布置作业:见作业本。
小学课件数学下册 第十三篇
教学目标
1、使学生理解求两数相差多少的应用题的`数量关系,学会解答此类应用题.
2、通过操作、观察和讨论,初步培养学生的逻辑思维能力和语言表达能力.
3、通过教学,向学生渗透比较思想,激发学生学习数学的兴趣.
教学重点和难点
重点:解答“求比一个数少几的数”的应用题.
难点:理解“求比一个数少几的数”的应用题中的数量关系,学会分析这类应用题.
教学过程
(一) 学习新 课
1. 师:同学们好!今天老师走进教室,发现值日生把教室打扫得真干净。我很想知道我们班与别的班级相比较,卫生成绩处于第几名?
生:第二名。
生:第一名。
……
2. 师:我们一起来看一看全校卫生评比表。(出示表格)
生:我们班最多16面。
师:用统计表很容易看出各班的卫生成绩。
3. 师:那你还可以知道其他班得红旗情况吗?(表格下面被树遮住)
生:二(2)班比我们班少3面,
生:二(1)班比我们班少5面,
生:二(4)班比我们班少1面,
……
4. 师:知道他们班红旗比我们班少,可以算出他们有多少面吗?(补上问题)
学生计算。
师:为什么这样算?同桌讨论一下。
甲生:我是这样想的:二(2)班比我们班少3面,就是.我们班多,我们班的面数可以分成两部分,一部分是和二(2)班同样多的,另一部分是比二(2)班多的3面,从16面中去掉比二(2)班多的3面,剩下的就是和二(2)班同样多的部分,也就是二(2)班面数。列式:16-3=13(面).
乙生:我是这样想的:假设我们班和二(2)班同样多都是16面,再去掉我们班比二(2)班多的3面,也就是二(2)班面数。列式:16-3=13(面).学出示课件。再请几个学生说一说思路.
5归纳.
师:同学们讨论得很好,你们想出了不同的方法.可以把较大数分成两部分,去掉比较小数多的部分求出比一个数少几的数;也可以把较小数假设和较大数同样多,再去掉比较大数少的部分就是较小数.因此,求比一个数少几的数的应用题,用减法计算.
六年下册数学课件 第十四篇
教学目标:
1.通过拼、摆、画各种图形,使学生直观感受各种图形的特征。
2.培养学生初步的观察能力、动手操作能力和用数学交流的能力。
3.能辨认各种图形,并能把这些图形分类。
教学重点:
初步认识长方形、正方形、圆形和三角形的实物与图形。
教学难点:
初步认识长方形、正方形、圆形和三角形的实物与图形。
教学准备:图形卡纸、实物、学具等。
教学过程:
一、复习,探究新知:
1.小朋友们还记得这些图形朋友吗? (长方体 正方体 球 圆柱)
2.你能把这些图形平平的面画下来吗?学生在纸上画一画
3.你们画下的图形有什么特点?
学生小组讨论并且小组小结最后派代表全班交流
不同点: 共同点:
长方形 对边相等 4个角都是直直的平面的
正方形 4边相等 4个角都是直直的 不断开的
圆 没有角 即封闭的)
三角形 有三条边 三个角
二、巩固发展:
1.说一说,你身边哪些物体的面是你学过的图形?
2.用圆、正方形、长方形、三角形画一画自己喜欢的图形?
小组内评一评,各小组展示作品。
3.练习一第1题
请小朋友涂一涂圆、正方形、长方形、三角形知道各涂什么颜色吗?小组讨论合作,反馈汇报哪些涂成黄色,哪些涂成蓝色,哪些涂成紫色,哪些涂成红色?
4.用圆、正方形、长方形、三角形拼一拼图形。
同桌合作比一比哪一桌拼的最好?全班交流展示。
5.第2题:数一数有几个圆、正方形、长方形、三角形?
独立完成 ,说说你是怎么数的?有什么好方法?
小结方法。
三、提高练习:
取长方形纸一张,对折再对折
取正方形纸一张,对折再对折
取正方形纸一张,对角折再对角折
观察结果
四、总结:今天你们学到了什么?
长方形、正方形、三角形、圆个有什么特点?
你有什么想问的?
考括坟籍,博采群议。快回答为大家分享的14篇八年级数学下册教案就到这里了,希望在八年级下册数学的写作方面给予您相应的帮助。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。