1. 主页 > 知识大全 >

物理教学论文【最新4篇】

在日常学习、工作生活中,大家都经常看到论文的身影吧,论文是讨论某种问题或研究某种问题的文章。你知道论文怎样写才规范吗?为了让大家更好的写作物理教学论文相关内容,快回答精心整理了4篇物理教学论文,欢迎查阅与参考。

物理学科教学评课稿 篇一

一、教师素质好,教学氛围和谐、积极。

教师的基本功扎实,讲授知识有深度、有广度、有技巧。教师的形体语言亲切、自然,口头语言清晰、流畅、幽默。营造了积极、和谐的教学氛围和平等、民主、自由的师生的关系,很好的实现了教师角色的转变(说通俗点简直不象是老师,而是学生的朋友和兄长)。为教师指导下学生自由地对科学的实验和知识探究作了很好的教学铺垫。课堂气氛活泼有序、教师调控能力和应变能力强、富有激情。使学生在轻松愉快的氛围中接受知识。

二、教学设计的评价

教学设计理念依据新一轮基础课程改革《物理课程标准》中:让生活走向物理,让物理走向社会的基本理念,面向全体学生。这节课彻底改变了学生被动接受的传统的教学模式,“在探究状态下学习”贯穿整个课堂教学。整个课堂设计完整、结构紧凑、逻辑严密、前后呼应。

三、教学过程的评价

1、首先从生活走向物理,导入新课。(巧妙激趣)

教师创设了一个真实的生活情景:让学生模拟到商店为家里新买的电器买电线的真实情景导入新课,并展开热烈讨论。让学生明白这么简单的生活小事中也包含着许多我们不知道的物理知识,激发学生学习欲望。一开始就让学生处在浓厚的学习兴趣中。

2、注重探究,教学方法多样。(大胆尝试,探究环环相扣,不断推出学生活动高潮)

本节课在教学设计和实际授课中营造了浓厚的探究氛围,让学生始终处于积极的思考和探究活动中。

比如:有学生的独立思考、有分组交流合作学习,取长补短;有个小组间的评比等。设计的分组实验让学生主动参与实验的设计和实施的全过程,到最后学生自主地总结出每一部分的实验结论和由学生自己对实验结论的综合总结。“提出问题——猜测与假设——设计实验——分析论证——加以评估”探究环环相扣,都让学生自己去合作完成,将学生活动不断推向新的高潮,让所有的学生都明白了“探究的科学过程”和“探究的科学方法”,教给学生的不止是物理知识,更重要的是教会了科学探究的方法,这是这堂课学生最大的收获,真正培养了学生的探究精神和创新意识。

3、教师大胆创新,从生活中获取教学资源。(展示教学能力)

比如,教师用来让学生比较铁丝和铜丝,让学生亲自观察、触摸,找到不同的地方;教师自行构思设计的温度对电阻影响实验:取用生活中的废弃的日光灯灯丝作为实验材料,做的温度对电阻的影响。效果非常明显!体现了教师的创新意识,也给了学生探究科学的启迪:让他们知道科学探究并不是神秘和不可及的,他们也可以做的

4、作业的设计精巧,满足不同层次学

物理学科研究论文 篇二

物理学科研究论文

【摘 要】

嵌入式系统、计算机技术、网络通信技术的快速发展使构建未来智能电网成为了可能,基于信息物理系统(CPS)技术构建电力信息物理融合系统(CPPS)为实现未来智能电网提供了新的思路。本文对CPPS平台进行了初步研究分析,介绍了应用于CPPS中的同步PMU技术、开放式通信网络、分布式控制。

【关键词】

CPPS;同步PMU;开放式通信;分布式控制

引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的`物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

4.1 IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式操作系统技术以及高速以太网技术等。

4.2 通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制措施,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS方法引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信网络技术、分布式控制技术分别进行了简单介绍。

精选物理教学论文(精 篇三

本节内容是在上一节安培力的基础上,进一步形成的新的知识点。重在让学生理解什么是洛伦兹力、并掌握洛伦兹力的方向判断和大小的计算。它也是后续学习《带电粒子在匀强磁场中运动》的知识基础。

本课教材在提出洛伦兹力的概念后,重在引导学生由安培力的方向和大小得出洛伦兹力的方向和大小,这种通过实验结合理论探究洛伦兹力的方向,再由安培力表达式推导出洛伦兹力的表达式的过程是培养学生逻辑思维能力的好机会,一定要让学生都参与进来。

知识基础:学生已经学习了《磁场对通电导线的作用力》一节,知道如何判断安培力的方向以及如何计算安培力的大小。但对于安培力产生的原因,却还不甚清楚。

技能基础:学生已经具备一定的逻辑推理分析能力,因此本节课可以引导学生思考安培力的产生原因,激发学生的求知欲,引入探究式学习。

(一)知识与技能

1、知道什么是洛伦兹力。利用左手定则判断洛伦兹力的方向。

2、知道洛伦兹力大小的推理过程。

3、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。

4、了解v和b垂直时的洛伦兹力大小及方向判断。理解洛伦兹力对电荷不做功。

5、了解电视显像管的工作原理

(二)过程与方法

通过观察,形成洛伦兹力的概念,同时明确洛伦兹力与安培力的关系(微观与宏观),借助洛伦兹力与安培力的关系,猜想并验证洛伦兹力的方向也可以用左手定则判断;通过思考与讨论,推导出洛伦兹力的大小公式f=qvbsinθ。最后了解洛伦兹力的一个应用——电视显像管中的磁偏转。

(三)情感态度与价值观

进一步学会观察、分析、推理,培养科学思维和研究方法。认真体会科学研究最基本的思维方法:“推理—假设—实验验证”。

重点:1.利用左手定则会判断洛伦兹力的方向。

2.掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。

这一节承上(安培力)启下(带电粒子在磁场中的运动),是本章的重点

难点:1.洛伦兹力对带电粒子不做功。

2.洛伦兹力方向的判断。

电子射线管、高压电源、磁铁、多媒体课件

根据对本节教材内容的分析,结合学情和相关教学资源,本节课以“情景问题猜想实验验证理论推导应用巩固”的思路进行设计。

课前通过观看“极光美景”视频,引出本节主题。然后借助“阴极射线管”演示实验指出磁场对运动电荷有力的作用,并激发学生学习的兴趣。课中借助安培力的方向,让学生通过猜想加验证的方式,学习并掌握洛伦兹力方向的判定方法,并进一步得出安培力与洛伦兹力的内在关系;借助安培力大小的计算公式,引导学生推导得出洛伦兹力大小的计算公式。最后通过练习加深对洛伦兹力的理解,并回答引入部分提出的问题。

教学过程中,以演示实验调动学生兴趣,引导学生观察、分析实验现象,围绕难点“洛伦兹力的方向”的理解,通过情景转换,老师引领、学生动手,同学互动,师生互动的方式,让学生感受,体验知识的生成过程。

(一)引入

视频欣赏:天文现象——极光

提问:为什么极光只出现在南北两极呢?

引导:解开此谜题的钥匙就是,磁场对运动电荷的作用规律。

[演示实验]观察磁场阴极射线在磁场中的偏转

[教师]说明电子射线管的原理:

说明阴极射线是灯丝加热放出电子,电子在加速电场的作用下高速运动而形成的电子流,轰击到长条形的荧光屏上激发出荧光,可以显示电子束的运动轨迹,磁铁是用来在阴极射线周围产生磁场的,还应明确磁场的方向。

提示:

1、没有磁场时,接通高压电源可以观察到什么现象。

2、光束实质上是什么?

3、若在电子束的路径上加磁场,可以观察到什么现象?

4、改变磁场的方向,通过观查从而判断运动的电子在各个方向磁场中的受力方向。

[实验结果]在没有外磁场时,电子束沿直线运动,蹄形磁铁靠近电子射线管,发现电子束运动轨迹发生了弯曲。

[学生分析得出结论]磁场对运动电荷有力的作用。------引出新课

(二)新课讲解

1、物理学中把磁场对运动电荷的作用力称为洛伦兹力。(展示洛伦兹介绍资料)

2、提问:如何探究洛仑兹力呢?

引导学生思考:

1)、电流怎么形成的?

2)、磁场对电流的作用、磁场对运动电荷的作用,两者间有何关联?

进一步引导学生分析:通电导线在磁场中为什么会受力?得出安培力与洛伦兹力的关系。

【说明】可以根据磁场对电流有作用力而对未通电的导线没有作用力,引导学生提出猜想:磁场对电流作用力的实质是磁场对运动电荷作用力的积累效果。即,安培力是洛伦兹力的宏观表现。

3、提问:既然安培力是洛伦兹力的宏观表现,那么,你们觉得可以如何探究洛伦兹力呢?

回答:借助对安培力的认识,探究洛伦兹力。

(1)提问:具体怎么探究呢,比如方向?

回答:左手定则

学生说明猜想理由:

1如图,判定安培力方向。(上图甲中安培力方向为垂直电流方向{WWW.JIAOXUELA.COM}向上,乙图安培力方向为垂直电流方向向下)

②.电流方向和电荷运动方向的关系。(电流方向和正电荷运动方向相同,和负电荷运动方向相反)

③.f安的方向和洛伦兹力方向关系。(f安的方向和正电荷所受的洛伦兹力的方向相同,和负电荷所受的洛伦兹力的方向相反。)

④.电荷运动方向、磁场方向、洛伦兹力方向的关系。(学生分析总结)

实验验证猜想:(回顾阴极射线管实验)猜想正确!

洛伦兹力方向的判断——左手定则

伸开左手,使大拇指和其余四指垂直且处于同一平面内,把手放入磁场中,让磁感线垂直穿入手心,若四指指向正电荷运动的方向,那么拇指所受的方向就是正电荷所受洛伦兹力的方向;若四指指向是电荷运动的反方向,那么拇指所指的正方向就是负电荷所受洛伦兹力的方向。

【要使学生明确】:正电荷运动方向应与左手四指指向一致,负电荷运动方向则应与左手四指指向相反(先确定负电荷形成电流的方向,再用左手定则判定)。

[投影出示练习题]试判断各图中带电粒子受洛伦兹力的方向,或带电粒子的电性、或带点粒子的运动方向。

[学生解答]

最后,通过“思考与讨论”,说明由洛伦兹力所引起的带电粒子运动的方向总是与洛伦兹力的方向相垂直的,所以它对运动的带电粒子总是不做功的。

(2)、洛伦兹力的大小

现在我们来研究一下洛伦兹力的大小。通过下面的命题引导学生一一回答。

设有一段长度为l的通电导线,横截面积为s,导线每单位体积中含有的自由电荷数为n,每个自由电荷的电量为q,定向移动的平均速率为v,将这段导线垂直于磁场方向放入磁感应强度为b的磁场中,求:

(1)电流强度i。

(2)通电导线所受的安培力。

(3)这段导线内的自由电荷数。

(4)每个电荷所受的洛伦兹力。

得出洛伦兹力的计算公式:当粒子运动方向与磁感应强度垂直时():

问题:若带电粒子不垂直射入磁场,粒子受到的洛伦兹力又如何呢?

引导学生进行分析:可将磁场分解(类比安培力公式得出方式)得出结论

当粒子运动方向与磁感应强度方向成θ时(v∥b)f=qvbsinθ

上两式各量的单位:f为牛(n),q为库伦(c),v为米/秒(m/s),b为特斯拉(t)

4、课堂练习

1、电子的速率v=3×106m/s,垂直射入b=0.10t的匀强磁场中,它受到的洛伦兹力是多大?(4.8×10-14n)

2、当一带正电q的粒子以速度v沿螺线管中轴线进入该通电螺线管,若不计重力,则()

a.带电粒子速度大小改变

b.带电粒子速度方向改变

c.带电粒子速度大小不变

d.带电粒子速度方向不变

(答案:cd)

3、电荷量为+q的粒子在匀强磁场中运动,下列说法正确的是()

a.只要速度大小相同,所受洛伦兹力就相同

b.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小方向不变

c.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直

d.粒子的速度一定变化

(答案:b)

4、来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将()

a.竖直向下沿直线射向地面

b.相对于预定地面向东偏转

c.相对于预定点稍向西偏转

d.相对于预定点稍向北偏转

(答案:b)通过本题进一步引导学生作图分析:为什么极光只出现在地球的两极?(与课前引入相呼应)

5、.电视显像管的工作原理

(1)原理:应用电子束磁偏转的道理

(2)构造:由电子枪(阴极)、偏转线圈、荧光屏等组成(介绍各部分的作用)

在条件允许的情况下,可以让学生观察显像管的实物,认清偏转线圈的位置、形状,然后运用安培定则和左手定则说明从电子枪射出的电子束是怎样在洛伦兹力的作用下发生偏转的。

再通过“思考与讨论”,让学生弄清相关问题。进而介绍电视技术中的扫描现象。

最后让学生回忆“示波管的原理”,通过对比看看二者的差异。

(三)对本节内容做简要小结

(四)作业布置

(1)复习本节内容

(2)完成“问题与练习”

一.洛伦兹力

1、洛伦兹力:磁场对运动电荷的作用力

安培力是洛伦兹力的宏观表现

2、洛伦兹力的方向:左手定则

f⊥vf⊥b

3、洛伦兹力大小:f洛=qvbsinθ

v⊥bf洛=qvb

v∥bf洛=0

4、特点:洛伦兹力只改变力的方向,不改变力的大小,洛伦兹力对运动电荷不做功

二.电视显像管的工作原理

1.原理

2.构造

本节课利用极光这一神奇的自然现象,通过阴极射线在磁场中的偏转演示实验来引入新课,新奇的实验现象极大地吸引了学生的兴趣,明显的实验现象使学生很容易总结出磁场对运动电荷有力的作用。通过电荷的定向运动形成电流,推导出伦兹力与安培力的关系(微观与宏观),由此可以借助安培力来探究洛伦兹力的大小和方向。最后了解洛伦兹力的一个应用——电视显像管中的磁偏转,这种与生活联系紧密的物理知识,能激发学生对物理学科的热爱,培养学生利用所学物理知识解释生活中的现象,体现从物理走向生活的教学理念。

通过课堂练习反馈,发现本课难点在于如何让学生发挥空间想象能力,判断洛伦兹力的方向。需要在课后加强练习。

物理学科教学经验交流发言稿 篇四

尊敬的各位领导、老师们:

大家好!

很荣幸,我能被选中代表物理组在今天的经验交流会上发言。在开讲之前,请原谅我的出言不逊,我认为,既然选择了教师这个职业,就要有“西天取经”战胜一切困难的勇气。不管是班门弄斧也好,自我陶醉也罢,但我们的目的是分享教学心得,达到共同提高。下面就我在高三物理教学中的一些做法给大家作一下汇报,讲的不对的地方,敬请批评指正。

“迎来日出,送走晚霞”。这两年我有幸连续在高三担任教学工作,深知课堂就是主战场,课堂效率就是生命线。但长期以来,权威人士评价一堂课的质量高低,似乎通常是“讲得如何”,而不是“学生学得怎样”,因而我认为很容易在高三复习过程中走入两个误区:一是教师认为自己的水平高,不相信学生,每节课滔滔不绝,讲课时面面倶到。在高三物理复习阶段,常看到这样的现象:课堂上老师从来就没有闲过——嘴里不停地说,手在黑板上不停地写,一节课准备好几黑板的内容,灌输知识的密度大得惊人,常常是老师觉得津津有味,学生则是昏昏欲睡。二是为了弥补课内挤占学生自主学习和休息的时间,很多教师就在课外拼命地发练习和补课。不少教师认为,一节课讲这么多学生能接受吗?这好办,不能接受的学生,就等下课以后再给他们补。所以经常看到的是老师追着学生补课,不厌其烦地给他们讲练习。上述两个误区都有同样的一个结果:基础差的学生会感到物理知识高深莫测,分不清主次,而被动地被老师牵着鼻子走,久而久之,便逐渐丧失了学习物理的兴趣与信心;基础好的学生则由于失去了主动开动思维、进行自我开拓的锻炼,独立解决物理问题的能力得不到提高。到头来是事倍功半,即使出了点“成绩”,也是以牺牲师生的身心健康为代价的。

路就在脚下。

“一番番春秋冬夏,一场场酸甜苦辣”。提高高三复习效果的出路究竟在哪里?其实就在你我脚下。我认为,高三复习的效果最终要体现在学生身上。所以,必须结合学生的实际制定总体复习计划和目标,贯彻因材施教的原则,把学习内容分层落实到每个学生身上。具体体会如下:

一、立足课内,精讲精练。

物理复习课中,我反对“只讲不练”、“不讲只练”和“多讲多练”等教学模式,我坚持讲与练结合的原则,精讲精练,使学生能触类旁通、举一反三。这种做法包括三个方面:一是考虑到知识的梯度。我认为,选编的练习学生能否按时完成至关重要,它直接影响着复习的目标能否实现,而教师的精力有限,所以我坚持精心选编练习题和测试题,同时坚持讲练结合,使每一单元的基本知识和思维方法落实到位。二是考虑到学生的层次。选编练习要有一定的层次,对不同层次的学生提出不同的要求,我采用自己抽查和学生互查的方式检查练习的完成情况,一旦发现学生中普遍存在理解模糊的问题,我便对症下药,及时补救。三是考虑到学生的落实情况。每节课前,我都会针对上节课的内容原创两道题:第一道默写概念、定律、公式及其变形式;第二道是关于上节课所讲例题的改编题。这样,就可达到实实在在的把每堂课的内容都落实到位的目的。

二、试卷讲评,追求高效。

我一直认为,讲评课是高三物理课堂教学的重要组成部分。上好讲评课对及时纠正错误、扬优补缺、巩固双基、规范解题、开阔思路、提高学生解决物理问题的能力有很重要的作用。在试卷讲评课的教学过程中,我认为自己攻克了四大难题:

1、什么时候讲?

我常常是在发下试卷后留给学生一定的时间,让他们自己去思考、去更正,确实解决不了的我再去讲。因为学生做错了的题目并不一定不会,有的只是粗心大意,很可能学生看后就能迅速解决,有的甚至在刚刚交上试卷后就明白怎么回事了。像这样学生通过自己的思考、领悟就弄明白了的题目,我就不讲,也没有必要讲。

2、讲什么?

我在调查中发现有些讲评课学生收获不大,最主要的原因是教师不分轻重,面面俱到。其实试卷上大多数题目学生可以自行解决,如果讲评时再眉毛胡子一把抓,学生自然会厌烦,觉得是浪费时间。因此,我备课前尽可能多地了解学生对做错的题是怎么样思考的,多问几个“为什么学生会在这道题(这类问题)上出错?”找出学生在理解物理概念、物理规律上存在的问题,在思维方式上存在的缺陷,将课堂的主要精力、时间集中到学生答题出现失误的“关节”所在,透彻分析,击中要害,防止类似错误的再次发生,使讲解更具有针对性。

3、怎么讲?

我认为,教师讲评应突出重点,重在指导,而不是重复、重演一遍,不能以题论题,不能只按题号顺序讲评,而是要善于引导学生对试卷上涉及到的物理情景进行分析归类,让学生对试卷上的同一类问题有一个完整感,这样才有利于学生总结提高。我通常的做法有如下3种归类方式:

(1)按知识点归类。就是把试卷上同一知识点的题目归在一起进行分析讲评。这种归类方式可让学生在我的指导下进行,我再从其中选择重点知识、典型题目进行分析讲评。

(2)按解题方法归类。就是把试卷中涉及同一解题方法、技巧的题归类到一起进行分析讲评。如把一份综合试卷分为整体法的应用、隔离法的应用、等效法的应用、函数图像在物理解题中的应用等类型。

(3)按错误类别归类。就是按答卷中出现的错误类型进行归类。

按以上三种方法归好类后,我再进行讲评。讲评时,要透过题中物理情景的表面现象,抓住物理问题的本质特征进行开放、发散式讲解。我一般从3个方面进行发散引导:

一是对物理解题思路发散——“一题多解”;

二是对物理情景发散——“一题多联”;

三是对物理问题发散——“一题多变”。

4、讲后怎么办?

讲评后,让学生更正试卷,并作好答错原因的分析和说明,或者是及时根据讲评情况,再精心设计一份针对性的练习题,我再重改试卷,并要求每一个学生第二次能拿满分,第二次改卷后,再与学生个别交流,帮助他们切实掌握知识。这一做法,我称之为“评后110分”。当然,由于学生在基础、能力等方面存在差异,这“评后110分”并不真的能让每一个学生的卷面成绩都是110分,但它对我和学生都提供了一个努力的方向。即便是考试拿不到满分,若事后能获得满分,其收获是相同的。而对我来说,这也是一个反思过程,通过这一过程可以了解教学效果,及时调整教学进度和教学方法。

三、强化实验,紧扣特色。

物理是所有学科中最具有科学性的学科,每一个概念和规律、公式,都是通过物理实验得出的。但是由于高三学生对实验重视不够,再加上高考评卷中对实验作答要求较高,每年的高考实验题基本上成了考生失分的大户,随着现行的一小带一大实验命题的改革,此种状况稍有改观,但仍然很难解决这一困难户,实验题也成为制约考生的一个“瓶颈”,实验复习时我是这样来把握的:

1、亲手做一做。

凡是带过高三的物理老师都有如此的经历:有关游标卡尺与螺旋侧微器的读数,老师在课堂上一而再,再而三,反反复复,一讲再讲,可效果呢?总是不尽人意,而高考中每年都会考到该内容,有位学生家长知道此事后,特意买了游标卡尺与螺旋测微器给他孩子练习读数,结果我相信不说大家都应知道,我的意思并不是每套仪器学生都得准备,只是想说实践的重要性。在复习的过程中,重要的演示实验和考纲要求的学生实验,我都亲手做一做,演示给学生看,激发学生的兴趣,提高学生的实验技能;对于一些抽象的物理过程,我还自制一些教具,使抽象的过程具体化、生动化,例如:我们现在正在复习带电粒子在匀强磁场中的运动,我便自制了这样一个圆圈来教学,使带电粒子的轨迹生动化,降低了学生理解的难度,教学效果如何呢?要等到我们24、25号月考后才能知道。对于一些不易观察到的物理现象或物理过程,我也利用flash动画课件展现给学生看,例如:电场中的等势面,天体的运动等都可以通过课件起到很好的教学效果。

2、动脑想一想。

高考实验题来源于课本实验,但更多的是高于课本实验,只有真正理解实验原理,掌握操作方法,才能在实验技能与技巧方面有所提高与突破。在实验复习的过程中,我特别注意让学生养成多角度思考问题的习惯,如实验仪器的选择、分压与限流、内接与外接,我会多问几个为什么,加强发散和求异思维的训练,做到举一反三,由此及彼,将实验的原理和方法运用到相同或相似的实验中去,设计出新实验,完成新实验,如正宗伏安法、另类伏安法。

3、结果算一算。

物理实验的过程很重要,但最终的结果更加重要。对最终结果的处理,我是从三个方面来进行的:一是各仪器的读数必须符合高中物理实验读数规则,主要是有效数字方面,如刻度尺,秒表,电流表,电压表等的读数规则;二是实验数据的处理方法,包括平均值法,图像法,处理结果,以及处理过程中出现的问题:偏差或误差;三是由实验结果推想改进方法,设计更科学的实验方案,如测电阻、测电源的电动势与内阻等都可创新出多种实验方案。可以说,大实验题是要边算边想的,不能一蹴而就。

总之,学生是学习的主体,我们要多探寻学生学习的规律及影响学生学习的可变因素,主动让自己的教学去适应学生,以学法定教法,真正落实学生在教学过程中的主体地位,使课堂教学成为提高高三物理复习效率的支点。只有提高高三物理课的复习效率,才能真正实现高三物理成绩的有效提升,今年高考我所教两个班理科综合都考的比较理想,特别是1015班高考理综200分以上的20人,位列全年级平行班第一。

各位领导,各位老师,教学质量没有最好,只有更好。“踏平坎坷成大道,斗罢艰险又出发”。在未来的日子里,我将以一中人特有的豪情,一如既往的在教学路上披荆斩棘,不断探索。我坚信,只要有“敢问路在何方”的勇气,就会收获“路在脚下”的喜悦!

谢谢大家。

三人行,必有我师焉。以上这4篇物理教学论文是来自于快回答的物理教学论文的相关范文,希望能有给予您一定的启发。