作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。你知道什么样的教学设计才能切实有效地帮助到我们吗?快回答整理了7篇一元一次方程教学设计,希望您在阅读之后,能够更好的写作一元一次方程教案。
元一次方程教学设计 篇一
1、教学内容分析
电话计费问题是生活中的常见问题。具有一定的现实性和开放性。生活中的数学问题大多是具有开放性的综合问题。所以对这类问题的探究是数学回归生活,服务于生活的需要。本节课是实际问题与一元一次方程的最后一课。设置这一探究的目的不仅是解决这个具体问题。而是通过这个问题的解决过程,让学生进一步体验建模解题的过程。
2、学习者分析
学生通过之前的学习。比较熟悉在一些典型问题中用方程模型。而对于电话计费问题这样的综合性问题。还缺乏解决问题的经验。容易无所适从或片面理解。
3、学习目标确定
知识目标:进一步培养学生列方程解应用题的能力。
情感目标:通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力。
4、学习重点和难点。
重点:引导学生弄清题意,设计出各类问题的答案。
难点:把生活中的实际问题抽象成数学问题。
5、学习评价设计
新课程理念强调“经历过程与获取结论同样重要",对数学知识的获得来说,过程比结论更有意义。我们不能把学生看成是一个“容器”,尽可能往里面塞知识,也不能把学生训练成只会解题的“机器”,而应该让他们投入到知识的获取过程中去。在过程中徼发学生学习兴趣和动机,展现他们得让思路和方法,使他们学会学习;进而从过程中建构进取型人格,通过过程中的“成就感”来完善自我。这是目前学生最需要的。因此本节课我采用“问题—探究—发现”的探究性教学方式。
在学法指导上,本节课主要通过学生自主探索,概括出单项式及其相关概念。在课堂。上充分体现了学生的主体性地位和学生学习的规律,及发现知识一探索知识——掌握知识一运用知识的学习过程。
6、学习活动设计
教师活动
学生活动
环节一(根据课堂教育学的程序安排)
教师活动1
问题导学:
下表中有两种移动电话计费方式:
月使用
费/元
主叫限定
时间/分
主叫超时费/
(元/分)
被叫方式一
58
150
0.25
免费
方式二
88
350
0.19
免费
考虑下列问题:
(1)设一个月内用移动电话主叫为t分(t是正整数)。根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费。
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法。
教师提出问题:
1、从表格中的数据,你能把主叫时间分为几部分?
2、你能分别把主叫时间不同的话费情况用含t的代数式表示出来吗?
3、(1)在两种收费方式下,会不会有这么一个时间,打不同样多时间的电话,却收费相同呢?
(2)如果有这一时间,那么如何分别表示收费表达式呢?(“收费相等”是本题列方程的等量关系)
4、你能根据表格判断两种收费方式哪种更合算吗?
学生活动:
教师提问,学生思考回答。教师对回答的方向适当给予提示。如月使用费的比较,超时费的比较等。然后,教师举出一两个具体的主叫时间,让学生通过简单计算回答相应的费用。
活动意图说明
通过提问和学生的回答,了解学生对表格信息的理解能力。引导学生对。表格信息做初步梳理和简单加工。通过对几个容易计算的主叫时间的话费计算,检验学生是否理解表格信息的含义,并渗透话费多少与主叫时间相关。
环节二
教师活动2
(1)学生充分交流讨论后完成表格:
主叫时间(t/min)
方式一(计费/元)
方式二(计费/元)
t<150
58
88
t=150
58
88
150<t<350
58+0.25(t-150)
88
t=350
58+0.25(350-150)=108
88
t>350
58+0.25(t-150)
88+0.19(t-350)
(2)观察上表,可以看出,主叫时间超出限定时间越长,计费越多,并且随着主叫时间的变化,按哪种方式的计费少也会变化。
①从表格中,可以看出当t≤150时,按方式一的计费少。
②当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能某一主叫时间,两种方式的计费相等。列方程58+0.25(t-150)=88,解得t=270。故当t=270时,两种计费方式相同,都是88元,当150<t<270时,按方式一计费少于按方式二计费;当270<t<350时,按方式一计费多于按方式二计费。
③当t=350时,按方式二计费少。
④当t>350时,可以看出,按方式一的计费为108元加上超出350 min的部分超时费0.25(t-350),按方式二的计费为88元加上超时费0.19(t-350),故按方式二的计费少。
根据以上的分析,可以发现当t<270 min时,选择方案一省钱;当t>270 min时,选择方案二省钱。
学生活动2
理解问题的本身是列方程的基础,本例通过表格形式给出已知数据,让学生根据问题展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。
活动意图说明
学生对电话计费问题是有生活基础的,所以也具备一定的认识基础,再给出探究问题之后让学生充分的发言。表达自己对问题的直观认识,这也是学生对问题的第一次认识,在此基础上,学生之间通过发表意见互相借鉴,为对问题的进一步探究进行准备。
环节三
教师活动3
练习:课件习题练习
学生活动3
教师提出问题,学生思考并制作表格,教师巡视。
活动意图说明:学生在参考了其他学生的观点之后,再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确立分类讨论的探究方式,并在总结学生发言的基础上归纳出分类的关键点。使学生的学习由感性认识逐步过渡到理性认识。
7、板书设计
(1)设一个月内用移动电话主叫为t分(t是正整数)。根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费。
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法。
8、教学反思与改进:
创设问题情境,联系生活实际,激发学习动机,将学生置于问题情境中。鼓励学生动手动口,增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题,学会能在不同的角度去探求生活经验从而让学生掌握知识。
元一次方程教学设计 篇二
一、活动内容:
课本第110页111页 活动1和活动3
二、活动目标:
1、知识与技能:
运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:
(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
3、情感态度与价值观:
通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。
三、重难点与关键
1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点
3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。
四、教具准备:
投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。
五、教学过程:
(一)、活动1
一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:
这个人买了n件商品需要多少元?
教师活动:
(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。
(2)教师对学生在发表解法时存在的问题加以指正。 学生活动:
(1)分组后对活动一的问题展开讨论,探究解决问题的方法。
(2)学生派代表上黑板板演,并发表解法。
解: 2.2n n100
2.2100+2(n-100) n100
问题转换:
一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:
(1)这个人买这种商品多少件?
(2)如果这个人买这种商品的件数恰是0.48n,那么n的'值是多少?
教师活动:同上 学生活动:同上
解:(1) n220
100+ n220
(2) =0.48n n=0
100+ =0.48n n=500
(二)、活动2:
本活动课前布置学生做好活动前的准备工作:
1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。
2、分组:(4人一组)
开始做下面的实验:
(1)把直尺的中点放在支点上,使直尺左右平衡。
(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?
(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a 和b,(不妨设较长的一边为a)
(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。
(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?
以上实验过程可以由学生填写在预先设计的记录表上
实验次数 棋子数 ab值 a与b的关系
右 左 a b
第1次 1 1
第2次 1 2
第3次 1 3
第4次 1 4
第n次 1 n
根据记录下的a、b值,探索a 与b的关系,由于目测可能有点误差。
根据实验得出a、b之间关系,猜想当第n次实验的a 和b的关系如何?a=nb(学生实验得出学生代表发言)
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)
此问题由学生合作解决并派代表板演并讲解,教师加以指正。
解:设支点离n枚棋子的距离为 x得:
x+nx=L x= 答:略
(三)、小结,由学生谈本节课的收获。
(四)、作业
1、课后了解实际生活中的类似活动问题,并举出几个例子。
2、课本,第110页活动2。
元一次方程教学设计 篇三
【教学背景】:
本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。
【教学目标】:
(一)知识与技能:
1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;
2、熟练掌握追及问题中的等量关系。
(二)过程与方法
培养学生观察能力,提高他们分析问题和解决实际问题的能力。
(三)情感态度价值观:
培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。
【教学重难点】:
1、重点:找等量关系列一元一次方程,解决追及问题。
2、难点:将实际问题转化为数学模型,并找出等量关系。
【教学方法】:
探究式
【教学过程】:
一、创设问题情景,引入新课:
1、行程问题中有哪些基本量?它们间有什么关系?
2、行程问题有哪些基本类型?
二、知识应用,拓展创新:
行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。
三、例题讲解
例1(同时不同地)甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。两人同时出发,同向而行,几秒后乙能追上甲?
分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。所以有等量关系:乙走的路程—甲走的路程=100
解:设x秒后乙能追上甲
根据题意得5x—3x=100
解得x=50
答:50秒后乙能追上甲。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)
中的同时不同地问题,以后遇到此类题,该如何解决。
例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。如果让黄色马先跑1s,棕色马再开始跑,几秒后可以追上黄色马?
分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。
解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)
中的同地不同时问题。
归纳小结:列方程解应用题的一般步骤:
审—通过审题明确已知量、未知量,找出等量关系;
设—设出合理的未知数(直接或间接);
列—依据找到的等量关系,列出方程;
解—求出方程的解;
验—检验求出的值是否为方程的解,并检验是否符合实际问题;
答—注意单位名称。
练一练:(环形跑道问题)甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。两人同时同地同向跑,几秒后两人第一次相遇?
分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程—乙走的路程=400
解答由学生完成。
本节知识归纳:
1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;
2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。
3 、用示意图辅助分析数量间的关系便于我们列方程。
四、作业布置:(见补充题)
【课后反思】:
通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。
元一次方程教学设计 篇四
一、教材分析
1、教材地位和作用
本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标
综上分析及教学大纲要求,本课时教学目标制定如下:
⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义
⒉.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念
⒊.体会解决问题的一种重要的思想方法----尝试检验法
⒋.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程
3、教学重点和难点
重点:一元一次方程的概念和用尝试检验法求方程的解
难点:利用等式的两个性质解一元一次方程
二、教法与学法分析:
教法方法与手段:
本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
三、教学设计
根据以上综合分析,这节课的教学流程为:
联系实际,创设情境——观察归纳,建构新知——交流对话,自我探索——
理解性质,应用巩固——总结反思,布置作业
(一)联系实际,创设情境
当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。所以,我设计如下问题:
xxxx年夏季奥运会上,我国获得32枚金牌。其中跳水队获得6枚金牌,比射击队获得金牌数的2倍少2枚。射击队获得多少枚金牌?
如果设射击队获得x枚金牌,那么跳水队获得(2x-2)枚金牌,所以得到等式:。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
[选一选]:下列各式中,哪些是方程?
⑴5x=0;
⑵42÷6=7;
⑶y2=4+y;
⑷3m+2=1-m;
⑸1+3x.
创设学生熟悉的感兴趣的问题情境,能激起学生学习的兴趣和热情,并进一步回顾掌握小学已学过的方程的概念和列方程。也为下面一元一次方程的概念建构做好准备。
[练一练]:请你运用已学的知识,根据下列问题中的条件,分别列出方程:
⑴奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环,其中第10枪(即最后一枪)的成绩为10.1环,问第9枪的成绩是多少环?
设第9枪的成绩为x环,可列出方程。
⑵国庆期间,“时代广场”搞促销活动,小颖的姐姐买了一件衣服,按8折销售的售价为72元,问这件衣服的原价是多少元?
设这件衣服的原价为x元,可列出方程。
⑶有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
设x年后树高为5m,可列出方程。
⑷2008年北京奥运会的足球分赛场---秦皇岛市奥体中心体育场,其足球场的周长为344米,长和宽之差为36米,这个足球场的长与宽分别是多少米?
设这个足球场的宽为x米,则长为(x36)米,可列出方程。
【通过丰富的实际问题,让学生经历模型化的过程、加深对建立方程这个数学模型意义的理解和体会,激发学生的好奇心和主动学习的欲望。】
(二)观察归纳,建构新知:
[议一议]:观察你所列的方程,这些方程之间有什么共同的特点?
(先鼓励学生进行观察与思考,并用自己的语言进行描述,然后学生进行交流。教师在学生发言的基础上,给出一元一次方程的概念,并进行适当的讲解。)
在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念——一元一次方程。有困难可提示:上述所列的方程中,方程的两边都是__式,只含有__个未知数,并且未知数的指数是__次,这样的方程叫做一元一次方程。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)
在学生对概念有了初步的印象后,紧接着给出几个式子让学生判断,为的是增强学生的判断能力和对概念的认识。练习有梯度、有层次。
最后总结提出:要成为一元一次方程需要几个条件?
[做一做]:
⒈.下列各式中,哪些是一元一次方程?
⑴5x=0; ⑵y2=4+y;
⑶3m+2=1-m;⑷x-=-;
⑸xy=1
⒉.你能写出一个一元一次方程吗?
(让学生回答,教师在黑板上板书,其他学生帮忙纠正)
在认识概念时学生可能出现的障碍:
例如:判断“5=x”和“x-(x-1)=1”两类型的式子
没有出现就算,有出现的话,教师不要马上给出判断,而是给学生足够的时间和空间去思考、讨论,经过一番对与错的碰撞,教师揭开“谜底”,并且渗透了认识事物要看其本质的教学思想。
(三)交流对话,自主探索
在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。
你们知道“练一练”第⑴题的方程=10.4的解吗?
你们是怎么得到的?
(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)
强调:我们知道x只能取10.5,10.6,10.7,10.8,10.9。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10.7是()方程=10.4的解。这种尝试检验的方法是解决问题的一种重要的思想方法。
[做一做]:
⒈判断下列t的值是不是方程2t+1=7-t的解:
⑴t=-2;
⑵t=2
追问:你能否写出一个一元一次方程,使它的解是t=-2?
这里的追问把练习提高一个层次,给学生一个创造的机会,使学生进一步全面理解一元一次方程及其解等概念。
⒉解方程:
⑴x-2=8;
⑵5y=8
(让学生思考解法,只要合理均以鼓励。)
除了这些方法,还有没有更好的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。
从学生已有的知识和能力出发探索更好的解法
(四)理解性质,应用巩固
实验
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
归纳等式的两个性质
⒈等式的两边都加上或都减去同一个数或式,所得结果仍是等式。
⒉等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。
说明:课本指出:“在小学我们还学过等式的两个性质”,但目前小学生尚未学过或未正式学过等式的两个性质。所以在此对等式的性质先作一番介绍。教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。使学生更好掌握等式性质。(具体、形象)这是根据学生的实际,适当对教材进行处理。
解方程例⒈利用等式的性质解下列方程:
⑴x-2=8;
⑵5y=8
(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程。可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。)
例⒉解下列方程:
⑴5x=504x;
⑵8-2x=9-4x
(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)
例题由浅到深,学生易掌握。对(2)有难度,可加提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。
[做一做]:
(五)总结反思,布置作业
[说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?
总结理清知识脉络,强化重点,内化知识,培养能力。
作业的设计采用分层的形式面向全体学生。
元一次方程教学设计 篇五
教学目标
①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。
②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。
③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。
教学重点与难点
重点:一次函数与一元一次方程的关系的理解。
难点:一次函数与一元一次方程的关系的理解。
教学设计
导语
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。
注:点明学习本节内容的必要性:
(1)函数与方程、方程组、不等式有着必然的联系;
(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。
引入新课
我们先来看下面的两个问题有什么关系:
(1)解方程2x+20=0。
(2)当自变量为何值时,函数y=2x+20的值为零?
问题:
①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?
②从问题本质上看,(1)和(2)有什么关系?
③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?
注:用具体问题作对比,帮助学生理解。
在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。
探讨归纳
从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?
学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)
师生共同归纳(教科书39页)(略)
让学生在探究过程中理解两个问题的同一性。
练习巩固
1.以下的一元一次方程问题与一次函数问题是同一个问题
序号
一元一次方程问题
一次函数问题
1、解方程3x—2=0当x为何值时,y=3x—2的值为O?
2、解方程8x+3=0
3、当x为何值时,y=—7x+2的值为O?
解:(略)
注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等
2.根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?
解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;
由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。
注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象
了解。
综合应用
教科书P.139例1(略)
对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。
注:例1可看成是一次函数与一元一次方程关系的一个直接应用。
归纳提高
框图化小结:
从数的角度看:
求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0
从形的角度看:
求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标
从数和形两方面总结,帮助学生建立数形结合的观念。
布置作业
教科书P.145习题11.3第1、2题。
元一次方程教学设计 篇六
一、教学目标
【知识与技能】
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
【过程与方法】
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
【情感态度和价值观】
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
二、教学重点
建立一元一次方程的概念,寻找相等关系,列出方程。
三、教学难点:根据具体问题中的相等关系,列出方程。
四、教学准备:多媒体教室,配套课件。
五、教学过程:
1。游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,
师:2,3,9,10
生2:84
师:17,18,24,25
师:同学们想学会这个魔术吗?
生:想!
师:通过这节课的学习,同学们一定能学会。
2。突出主题,突出主体
(1)师:看大屏幕,独立思考下列问题,根据条件列出式子。
A、 x的2倍与3的差是5
B、长方形的的长为a,宽比长少5,周长为36,则=36
C、 A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?
生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程,学生讨论出上述答案后
师:大屏幕显示上述问题的答案
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)
(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A、1+2+3+4>8
B、2x3
C、x=1
D、|10.5x|=0.5y
2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
六、小结作业
元一次方程教学设计 篇七
教学目标
1.熟悉利用等式的性质解一元一次方程的基本过程
2.通过具体的例子,归纳移项法则
3.掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性
教学重点
重点是移项法则
教学难点
重点是移项法则
教学流程
1.提出问题:解方程:5x-2=8
2.自主探索、合作交流:
先由学生独立思考求解,再小组合作交流,师生共同评价分析
方法1:
解:方程两边都加上2,得5x-2+2=8+2
也就是5x=8+2
合并同类项,得5x=10
所以,x=2
3.理性归纳、得出结论
(让学生通过观察、归纳,独立发现移项法则。)
比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于
5x-2=8 5x=8+2
即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)
方法2;
解:移项,得5x=8+2
合并同类项,得5x=10
方程两边都除以5,得x=2
4.运用反思、拓展创新
[例1]解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7
教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流
[例2]解方程:
5.小结回顾:学生谈本节课的收获与体会。师强调:移项法则。
6.布置作业: (略)
三人行,必有我师焉。快回答为大家分享的7篇一元一次方程教学设计就到这里了,希望在一元一次方程教案的写作方面给予您相应的帮助。