1. 主页 > 知识大全 >

北师大小学数学六年级上册教案优秀7篇

作为一位杰出的教职工,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下这7篇北师大小学数学六年级上册教案是来自于快回答的北师大版六年级数学上册教案的范文范本,欢迎参考阅读。

六年级数学上册教案 篇一

【教学目标】

1、认知目标使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、情感目标引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

【教学难点】:理解圆的面积计算公式的推导。

【教学准备】:相应课件;圆的面积演示教具

【教学过程】

一、情境导入

同学们,今天老师遇到了一个问题,要给学校的圆形花坛铺草坪,每平方米8元,很显然要求出这个圆形花坛的面积,那么怎样计算一个圆的面积呢?我们能不能和以前学过的`图形联系起来呢?如果知道了圆的半径或者直径,可以计算出图中圆的面积呢?这就是我们今天学习的内容(板书课题:圆的面积)前面我们学习了圆的有关概念。针尖所在的点叫做圆心;

圆心与圆上任意一点的线段叫做半径;

通过圆心并且两端都在圆上的线段叫做直径。围成圆的曲线的长就是圆的周长。周长公式c=πd或c=2πr同学们可知什么为图形的面积,比如此长方形,长方形所占平面的大小叫做长方形的面积。那么圆呢?圆所占平面的大小叫做圆的面积。(板书)如何求圆的面积呢?同学们还记得平行四边形的面积我们怎么去求的,去推导的吗?

二、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]3、学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!3.求下面各圆的面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

四、课堂作业。

1、教材P68页“做一做”第1小题。

2、判断题让学生先判断,并讲一讲错误的原因。

3、填空题复习圆的半径、直径、周长、面积之间的相互关系。

4、教材P71页练习十五第3、4小题。

5、完成课件练习(知道圆的周长求面积)老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。

五、课堂总结

师:同学们,通过这节课的学习,你有什么收获?

六、布置作业

圆的面积圆所占平面的大小叫做圆的面积。

长方形的面积=长宽圆的面积=圆周长的一半半径=rr=r2S=r2

六年级数学上册教案 篇二

教材分析

1、本节课是在学习了折扣和纳税之后的第三个用百分数解决问题的知识点,是用百分数解决问题中最重要的问题,也是本章内容中的一个难点。

2、本节课的主要内容是让学生了解“本金”“利息”“利率”的意义,掌握利息的计算方法以及利率在生活实际中的应用。

学情分析

1、本节课是在学生学习了折扣和纳税这两个用百分数解决问题的基础上将要学习的第三个用百分数解决问题的知识点。

2、学生在学习这个知识点时的障碍点应该在于利息税的扣除和国债利息不扣除利息税上。

教学目标

1、通过教学使学生知道储蓄的意义:明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单的计算。

2、对学生进行勤俭节约,积极参加储蓄,支援国家、灾区、贫困地区建设的思想品德教育。

教学重点和难点

重点:掌握利息的计算方法。

难点

1、通过自主探索,了解利息的计算方法;

2、利息税的扣除和国债利息不扣除利息税上。

教学过程:

一、课内交流、探究

师:在储蓄的过程中,你搜集到哪些相关的知识?(学生分组汇报调查结果)

(生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:

(1)有关储蓄的一般知识,如储蓄的方式;

(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;

(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;

(4)、有关调查中遇到的困难、解决的方法和自己的感受)

师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

板书:利息与本金的比值叫做利率。

利息=本金×利率×时间

二、创设情景、体验储蓄

1、创设情景

2、体验储蓄。根据刚才的汇报情况,安排教学过程。

(1)学生拿出复制好的储蓄存款凭证进行填写。

(2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。

(3)、充分联系生活,设置储蓄密码。

(4)保管好存折或存单。

师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。

三、运用知识、解决问题

1、交流讨论,了解利息的计算方法。

师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?(学生分组讨论计算,汇报情况)

2、学习利息税知识。

师:大家都算出了应得的利息,但实际上张大爷他并不能得到你们算出的这些钱,你们知道为什么吗?请大家看一下课本第99页最下面的一句话:“国家规定,存款的利息要按5%的税率纳税。”哪位同学能解释一下?

生:就是银行多给的那部分钱的5%要上交给国家。

生:就是只能得到利息的95%。

师:对,存款的利息必须要按5%的利率纳税,纳税是我们每一个公民应尽的义务,在座的各位同学长大之后都要依法进行纳税。

师:储蓄到期时,张大爷实际领取本金和利息一共是多少?

生1:48.60×5%=2.43(元)

1000+48.60—2.43=1046.17(元)

生2:48.60×(1—5%)=46.17(元)

1000+46.17=1046.17(元)

生3:1000+48.60×(1—5%)=1046.17(元)

师总结利息的利息计算方法。

3、巩固新知:学生进行练习(教材第100页的“做一做”)

(1)学生个人独立思考解决问题。

(2)学生个人汇报

四、课后实践、体验储蓄过程

师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。

五、课后作业布置

课本练习二十三的第6、9题。

2021最新北师大版六年级上册数学教案 篇三

一、教学目标:

1、首先带动课堂气氛

2、教会学生什么是面积。

3、学习圆柱体侧面积和表面积的含义。

4、能够求圆柱的侧面积和表面积的方法。

二、教学重点:

动手操作展开圆柱的侧面积

三、教学难点:

圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

四、教具准备:

圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

五、教学过程 :

(一)、 创设情境,引起兴趣。

出示:牛奶盒,纸箱,可比克。

提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

(2)制作这些包装盒,至少需要多大面积的材料?(指名说)

师:谁能说说上一节课你学过圆柱体的哪些知识?

生:........

师:请同学们拿出你自制的圆柱体模型,动手摸一摸

生:动手摸圆柱体

师:谁能说一说你摸到的是哪些部分?

生:.......

师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

(二)、 探索交流,解决问题。

圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题) 提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形) (展开的形状可能是长方形、平行四边形、正方形等)

1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

2.操作活动:

(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

(2)观察这个图形各部分与圆柱体茶叶罐有什么关系? 独立操作后,与小组里的同学交流

3.小组交流 能用已有的知识计算它的面积吗?

4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

板书:

长方形的面积= 长 × 宽

↓ ↓ ↓

圆柱的侧面积 =底面周长× 高

所以,圆柱的侧面积=底面周长×高

S 侧= C×h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

师:如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

(四)、练习

求圆柱的侧面积(只列式不计算)

1。 底面周长是1.6米,高是0.7米

2。 底面直径是2分米,高是45分米

3。 底面半径是3.2厘米,高是5分米

(五)研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

2、动画:圆柱体表面展开过程

3、圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2 4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

(六),巩固应用,内化提高

1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒 提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米) 重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

六、教学结束:

布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

北师大版六年级数学上册教案 篇四

教案设计

设计说明

复习是对已学知识加以回忆,并进行系统整理的过程,不是讲授新知识,因此要特别注意知识间的联系,将所学知识系统化。到本册教材为止,小学阶段的三种统计图已经全部教学结束,所以在本节课中要特别注重三种统计图的对比,引导学生体会如何根据统计需要选择恰当的统计图,不同的统计图能反映出数据的哪些信息等;通过对数据进行分段整理和比较,让学生从不同方面对数据进行分析和比较,培养学生从不同角度分析数据的能力。

课前准备

教师准备 PPT课件

教学过程

⊙归纳整理

1.归纳整理。

师:本学期我们在统计与概率方面学习了哪些知识?请同学们先自行整理,再在小组内交流。

借鉴教材“独立思考”板块,引导学生从统计图的类型、特点和分段整理、分析数据等方面进行回忆整理。

2.学生汇报,相互补充。

引导学生自由交流、相互补充,建立知识之间的联系。

设计意图:通过引导学生回顾、整理统计与概率部分的知识,学生对统计图方面的知识有了一个比较系统的了解,建立了知识之间的联系,形成了相对完善的知识体系。

⊙分类整理

1.复习扇形统计图的特点和作用。

(1)回顾。

本学期我们学习了扇形统计图,你们对扇形统计图有哪些了解?

(①特点:用整个圆的面积表示总数,用圆内的扇形面积表示各部分占总数的百分数。②作用:从图中能清楚地看出各部分与总数的百分比,以及各部分与各部分之间的关系)

(2)巩固练习。

组织学生完成教材106页1题。

①呈现问题,请学生独立思考并尝试解决。

②组织学生交流汇报。

2.根据统计要求选择恰当的统计图。

(1)呈现问题:

下面几组数据分别选用哪种统计图表示更合适?(课件出示)

王羽家去年1~6月份支出情况统计表

月份

1

2

3

4

5

6

金额/元

20xx

3800

2900

2200

3000

2700

王羽家去年5月份各种支出所占百分比情况统计表

用途

教育

食品

还购房贷款

水电费

服装

其他

百分比/%

15

30

30

5

15

5

王羽家去年5月份各种支出情况统计表

用途

教育

食品

还购房贷款

水电费

服装

其他

金额/元

450

900

900

150

450

150

(2)明确三种统计图的作用。

师:你们知道三种统计图各自有着怎样的特点和作用吗?引导学生在小组内以表格的形式整理出三种统计图的特点和作用。

条形统计图

折线统计图

扇形统计图

特点

用一个单位长度表示一定的数量。

用整个圆的面积表示总数,用圆内扇形的面积表示各部分占总数的百分比。

用直条的'长短表示数量的多少。

用折线的起伏表示数量的增减变化。

作用

从图中能清楚地看出各部分数量的多少,便于相互比较。

从图中能清楚地看出数量的增减变化情况,也能看出各部分数量的多少。

从图中能清楚地看出各部分占总数的百分比,以及各部分之间的关系。

(3)学生独立解答。

(表①要表示出去年1~6月份支出的增减变化情况,应选用折线统计图;表②要表示出去年5月份各种支出所占百分比的情况,应选用扇形统计图;表③要表示出去年5月份各种支出的具体数量,应选用条形统计图)

设计意图:

通过复习扇形统计图的特点和三种统计图的作用,进一步培养学生归纳知识、解决问题的能力。

3.复习分段整理数据。

(1)回顾:本学期在学习数据的整理、分析方面我们有哪些收获?

学生交流:除了可以将数据进行排序外,还可以将数据进行分段整理、分析,并交流分段整理、分析数据的方法和作用。

(2)巩固练习。

组织学生完成教材106页2题。

①组织学生整理数据。

②小组内讨论解题方法并汇报。

北师大小学数学六年级上册教案 篇五

一、课题:

倒数的认识

二、教学内容:

p27倒数的认识,练习六全部习题。

三、教材简析:

这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

四、教学要求:

使学生认识倒数的`概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

五、教学过程:

(一)用汉字作比喻引入

1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

(学生各抒己见)

师生共同确定本节课的目标——研究倒数的意义、方法和用处。

(二)新知探索:

1、研究倒数的意义

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

2、学生自主举例,推敲方法:

(1)师:下面,请大家各自举例加以说明。

(2)学生先独立思考,再交流。

(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

(c、以“带分数”为例;带分数的倒数是真分数。)

(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

(e、以“整数”为例;整数相当于分母是1的假分数)

学生举例的过程同时将如何寻找倒数的方法也融入其中。

3、讨论“0”、“1”的情况:

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

(三)反馈巩固:

1、完成“练一练”。

学生独立完成后,集体订正。重点问:“8”的倒数是几?

2、练习六5

3、补充判断:

a、 a是自然数,a的倒数是1/a。

北师大版六年级上册数学优秀教案 篇六

教学目标:

知识与技能

(1)认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

过程与方法

(1)经历动手操作的活动过程,培养学生作图能力。

(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

情感、态度与价值观

通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

教学目标:

1.通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

2.了解、掌握多种画圆的方法,并初步学会用圆规画圆。

3.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

教学重点:

探索圆的各部分名称、特征和关系。

教学难点:

通过实际的动手操作体会圆的特征。

教学过程:

一、整体感知圆

1.出示幻灯:生活中的圆

摄影作品,在这些美丽的图片中你们发现了什么图形?生活中你在哪见过圆?

2.揭示课题:圆无处不在,这节课我们就来认识它。

板书:圆的认识

3.同学们喜欢玩套圈的游戏吗?现在就来试试?

我这有一个玩具,要求你只能站在距离它三米远的地方扔圈,你可以站在哪里?

我们用三厘米代表三米,你能在本上标出你所在的位置吗?

2.实投学生成果(由画几个点到多点,直到圆)

问:站在这几点都可以吗,为什么?只能站在这几点上吗?

出现圆后问,还有地方站吗?

3.课件演示

师:那么到底可以站在哪?(圆上任意一点)

圆上这样的点有多少个?

二、操作中认识圆

1.屏幕上有一个圆,同学们能利用现有的工具制造一个圆吗?

2.学生画圆,师巡视

3.汇报不同画圆的方法(先找用圆形工具画的汇报)

拿线绳画的黑板演示

谈话:这位同学拿这么长的绳子在黑板上画了这么大的一个圆,如果我想在操场上画个大圆怎么办呢?

圆规画的实投展示

4.总结圆规画圆方法

5.学生练习圆规画几个圆

既然我们可以借助圆形工具来画圆,人们为什么还会发明圆规呢?

6.观察自己所画的圆,除了一条封闭的曲线还有什么?(点儿)

给它取个名字——圆心(如果学生能说就让学生说)用字母O表示

7.拿出手中的圆纸片,你们有办法确定这个圆的圆心吗?

学生动手折

问:除了圆心你们还发现了什么?(折痕)

你发现的折痕是什么样子的。

师:谁愿意到前面介绍自己的发现?揭示直径半径定义

你能在圆上画出直径和半径吗?

在自己所画的圆上标出圆心、画出半径和直径

三、交流探究圆

圆心和半径到底有什么作用呢?画一画就知道了

1、用圆规在本上画出几个不同的圆,看谁画得漂亮。

2、投影展示

问:你们画得圆有的在上、有的在下、有的偏左有的偏右,什么决定的?

学生汇报,圆怎么这么听话呢

师小结:圆心决定圆的位置,怪不得人家叫圆心呢

这些圆大小各异,怎么画就能让他有大有小?

小结:圆的半径决定圆的大小(圆规两脚间距离)

3、师:半径的本事不小,想不想知道半径还有什么特征?是我直接告诉你们还是自己研究?

那就结合老师的提示利用手中的工具小组共同研究吧

4.研究提示

同一个圆内,半径与直径有什么关系?

同一个圆内,半径有多少条?

同一个圆内,半径的长度都相等吗?

汇报

同圆直径是半径的2倍 板书d=2r

问:你怎么知道的?

同圆的半径有无数条,为什么?(圆上有无数的点、折痕中发现)

同圆的半径有无数条,那么直径有多少呢?

板书:同圆内半径有无数条。

同圆的半径都相等,为什么?(通过测量,通过推理)

同圆的半径都相等,那么直径都相等吗?

板书:同圆内半径都相等。

所以古人说:圆,一中同长也

这个一中指什么?同长指什么?

边看幻灯边读这句话。

一中同长的圆在生活中应用很广泛

4、车轮的外形为什么做成圆的,你能解释吗?

为什么不把车轮做成这些形状的?(出示正多边形图片)

四、比较中深化圆的认识

1.由正三角形到正十二边形,有什么变化?

2.想象,正100边形会是什么样子?(接近圆,但不是圆)

正3072边形呢?(更接近圆,但还不是圆)

到底多少边的时候就是圆了呢?

3、《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

4、阴阳太极图。

师:想知道这幅图是怎么构成的吗它是用一个大圆和两个同样大的小圆组合而成的现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?

5、下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?

问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)

问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)

问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)

课下每个同学选择一个自己最感兴趣的课题来研究。

五、总结

学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!

六年级数学上册教案 篇七

教学内容:

课本第4—6页,例2,例3及“做一做”,练习二1—4题。

教学目标:

(1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

(2)学会分数乘分数的简便计算。

(3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重、难点:

理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

教学过程:

一、复习。

1、计算下列各题并说出计算方法。

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

二、新课。

引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

1、理解一个数乘以分数的意义。

(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?

指名列式,板书:

问:表示什么意思?指名回答,板书:求3个或求的3倍。

(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

指名回答:半瓶用表示;式子为:。

说明:是求的一半是多少,也就是求的是多少。板书:求的。

(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?

指名回答,板书:,问:表示什么意思?指名回答,板书:求的。

2、引导学生小结。

①指出三个算式都是分数乘法,比较三个算式的不同点:

第一个算式与第二、三个算式中乘数有什么不同?

想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

学生齐读课本的结语。

练习:

课本的做一做1、2题。

说一说下列算式的意义。

理解分数乘以分数的计算方法。

(1)出示例3(先出示第一个问题)。

问:你根据什么列出式子?

得出:根据“工作效率×工作时间=工作总量”列出式子:。

问:如果我们用一个长方形表示1公顷,那么公顷怎样表示?

问:公顷的是什么意思?

要求学生观察图

(2)问:在图中的对于1公顷来说,是1公顷的几分之几?

引导得出:

观察这个式子有什么特点?

出示例3的第二个问题。

问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?

板书:公顷)

(2)引导学生小结分数乘以分数的计算方法。

观察分数乘以分数的计算过程,谁能说一说计算方法?

教师归纳,再看书上结语。

再说明,为了计算的简便,也可以先约分,再乘。

例:

(3)做一做。

三、巩固练习:练习二第1、2题。

四、小结。

这节课我们学习了什么内容?

一个数乘以分数的意义是什么?

分数乘以分数的计算方法是什么?

五、作业。

练习二第3、4题。

熟读唐诗三百首,不会做诗也会吟。以上这7篇北师大小学数学六年级上册教案是来自于快回答的北师大版六年级数学上册教案的相关范文,希望能有给予您一定的启发。