1. 主页 > 知识大全 >

二次函数的顶点课件(优秀5篇)

为了加深您对于二次函数顶点式习题的写作认知,下面快回答给大家整理了5篇二次函数的顶点课件,欢迎您的阅读与参考。

二次函数顶点公式 篇一

二次函数基本定义

一般地,把形如y=ax2+bx+c(a≠0),(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。

二次函数课件 篇二

性质

开口方向

对称轴

顶点坐标

增减性

当______时,随的增大而增大;

当______时,随的增大而减小。

当______时,随的增大而增大;

当______时,随的增大而减小。

最值

当____时,函数取得

最____值____.

当____时,函数取得

最____值____.

3、教师活动内容

观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。

Ⅴ.评测练习

1. 函数的图象可由的图象向平移 个单位长度得到;

函数的图象可由的图象向平移 个单位长度得到。

2. 将函数的图象向平移 个单位可得函数的图象;

将函数的图象向平移 个单位长度可以得到函数的图象;

将函数的图象向平移 个单位可得到的图象。

3. 将抛物线向上平移3个单位,所得的抛物线的表达式是 .

将抛物线向下平移5个单位,所得的抛物线的表达式是 .

4. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,当时,随的增大而 ,当时,随的增大而 ,当 时,函数取得最 值,这个值等于 .

5. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,随的增大而 ,在对称轴的右侧,随的增大而 ,当x= 时,函数取得最 值,这个值等于 .

6.二次函数的图象经过点A(1,-1),B(2,5),则函数的表达式为 ;若点C(-2,m),D(n ,15)也在函数的图象上,则点C的坐标为 ,点D的坐标为___________

二次函数课件 篇三

1. 能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响。

2. 能说出二次函数图象的开口方向、对[www.kuaihuida.com]称轴、顶点坐标、增减性、最值。

3. 经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用。

4. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解。

(教学重点)

1.二次函数的图象和性质

2.二次函数与二次函数图象的关系。

(教学难点)

能够比较和的图象的异同,理解对二次函数图象的影响。

(板书设计)

课题

二次函数的图象与性质:

(教学过程)

Ⅰ.温故知新、引入新课:

初中二次函数教学课件 篇四

初中二次函数教学课件

初中二次函数教学课件

教学目标设计

知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求

1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力, 学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求

1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计

由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程

导学提纲

设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富 ,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受 ,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

(一)前情回顾:

1.复习二次函数y=ax2+bx+c(a≠0)的图象、顶点坐标、对称轴和最值

2.(1)求函数y=x2+ 2x-3的最值。

(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)

3、抛物线在什么位置取最值?

(二)适当点拨,自主探究

1.在创设情境中发现问题

:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?

2、在解决问题中找出方法

:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?

(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题, 目的在于让学生体会其应用价值——我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)

3、在巩固与应用中提高技能

例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?

(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的`角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)

解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米2,得到:

Y=x(32-2x)= -2x2+32x

[错解]由顶点公式得:

x=8米时,y最大=128米2

而实际上定义域为11≤x ﹤16,由图象或增减性可知x=11米时, y最大=110米2

(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错 解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与 形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)

(三)总结交流:

(1) 同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.

引导学生分析解题循环图:

(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?

(四)掌握应用:图中窗户边框的 上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。)

(五)我来试一试:

如图在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,M,N分别为垂足,已知AC=1,AB=2,求:

(1)何时矩形PMCN的面积最大,把最大面积是多少?

(2)当AM平分∠CAB时,矩形PMCN的面积。

(六)智力闯关:

如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最 大面积是多少?

作业:课本随堂练习、习题1,2,3

板书设计

二次函数的应用——面积最大问题

课后反思

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。

就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。

二次函数的顶点课件 篇五

二次函数的顶点课件

一、教学目标:

1、知识目标:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。

2、技能目标:会用待定系数法求二次函数的表达式。

3、情感目标:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

二、教学重、难点:

1、重点:用待定系数法求二次函数的解析式

2、难点:建立适当的直角坐标系,求出函数解析式,与环保知识相结合解决实际问题

三、学习方法:

积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中发现新知识。

四、目标评价:

1、通过两个典例示范,让学生明白如何利用一般式和顶点式来确定二次函数的表达式,以完成知识目标。

2、通过变式训练小结出如何根据不同的条件恰当的选择二次函数的表达式,以完成技能目标;

3、通过提升应用将二次函数回归生活,应用于生活,以完成情感目标。

五、学习过程:

一、复习引入:

1、想一想一次函数的表达式是什么?如何确定一次函数的表达式?二次函数的一般式是什么?怎样确定二次函数的表达式?

设计意图:利用已有的知识经验迁移到新知识中:用同样的思路去确定二次函数表达式。

2、典例示范,获取新知:

(1)例1:给定三点试求二次函数的解析式

已知抛物线经过三点A(0,2),B(1,0),C(-2,2),求二次函数的解析式。

先让学生自己尝试完成,然后教师通过屏幕演示,强调二元一次方程组的解法,加深做题印象,强化做题步骤。

(2)例2:给定两点试求二次函数的解析式

已知抛物线其顶点坐标为(-1,-6), 且经过A(2,3)点,求二次函数的解析式。

首先让学生思考给定三个点的坐标可以确定出二次函数的一般式,如果给定两点可以吗?如果可以,必须是什么样的两点?让学生感受到确定二次函数的表达式有不同的方法。

设计意图:做题过程中,鼓励学生采用多种方法去解题,然后对各种方法进行比较,从而得出用顶点式的表达式的方法更为简单;也让学生明确了什么时候该用顶点式的表达式。

二、、慧眼识珠:试判断下列各题分别用哪种方法来求表达式,并说明理由。

1、已知抛物线经过三点A(0,3),B(-1,0) C(1,-5),求二次函数的表达式。

2、已知抛物线其顶点坐标为(1,4),且该图像经过点A(4,6),求二次函数的表达式。

3、已知抛物线顶点在坐标原点,且图像经过(2,8),求二次函数的表达式。

设计意图:通过第三题引出抛物线表达式的几种特殊形式,并且强调这几种表达式各自的特点以及与顶点式的联系。

三、变式训练,灵活应用

(1)已知抛物线过两点A(1,0),B(0, -3)且对称轴是直线x=2,求这个抛物线的表达式

(2)已知抛物线顶点在直线y=x+1上,二次函数的最大值是2,并且图象经过点(3,-6),求此二次函数的解析式。

(3)当 x>3时,y随x的增大而增大,当 x<3时,y随x的增大而减小,y的最小值是2,且图像经过点(5,0),求函数表达式。

(4)已知二次函数的图象与x轴交点的横坐标分别是-3,1,且与y轴交点为(0,-3),求这个二次函数表达式。

设计意图:通过几个不同形式的练习题,让学生明确什么时候改用一般式,什么时候该用顶点式;采用顶点式的表达式时,它的主要标志有:顶点坐标、最值、对称轴、增减性等。从而达到灵活应用不同形式的抛物线表达式去解题的目的。

四、提升运用、回归生活

一个桥洞的截面边缘成抛物线形,如图,当水面宽AB= 4m 时,测得桥洞顶点C与水面的距离为2m,一只宽为2.4m,高为1.5m的'小船能否通过?为什么?

(2)想想还有没有其它的建立坐标系的方法,不用求表达式,只说明理由。

(3)选择一种抛物线的解析式试求小船能否通过桥洞?

设计意图:抛物线这部分的知识是非常抽象又枯燥的,所以与生活实际相联系可以提高学生学习数学的兴趣,达到学以致用的目的;同时通过学生自己动手建立坐标系,求表达式,让学生感受到不同的坐标系对应不同的表达式,使学生根据不同的条件灵活的掌握如何确定二次函数的表达式的方法。

五、课堂小结,盘点收获

1、如何根据不同的条件确定二次函数的表达式?

(由学生归纳总结)

求二次函数表达式的一般方法:

已知图象上三点坐标,通常选择一般式;

已知图象的顶点坐标(对称轴、最值、增减性)通常选择顶点式;

2、确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达式,

3、本节课你还有哪些疑惑?还有哪些方面的收获?(例如:解题方法、思维的提升、小组活动等方面)

六、自我测试

1.已知抛物线顶点为(1,2),与x轴交于点(2,0),求出二次函数的表达式.

2、已知抛物线经过点(-1,-1)(0,-2)(1,1)

(1) 求这个二次函数的解析式

(2) 指出它的开口方向、对称轴和顶点坐标

(3) 这个函数有最大值还是最小值?这个值是多少?

七、作业

1、将导学案中前面没做完的继续整理好;最后一题课后继续探究。

2、伴你学第六节,第一题至第八题。

书到用时方恨少,事非经过不知难。快回答为大家分享的5篇二次函数的顶点课件就到这里了,希望在二次函数顶点式习题的写作方面给予您相应的帮助。