1. 主页 > 知识大全 >

《最大公因数》小学数学优秀教学设计优秀7篇

作为一无名无私奉献的教育工作者,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。写教学设计需要注意哪些格式呢?快回答分享了7篇《最大公因数》小学数学优秀教学设计,希望对于您更好的写作最大公因数有一定的参考作用。

《最大公因数》小学数学优秀教学设计 篇一

教学内容

《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

设计思路

这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

教学目标

1、使学生理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

4、培养学生抽象、概括的能力。

重点难点

1、理解公因数和最大公因数的意义。

2、掌握求两个数的最大公因数的方法。

教具准备

多媒体课件、卡片

教学过程

一、导入

1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

2、分别写出16和12的所有因数。

二、教学实施

1、老师用多媒体课件演示集合图。

指出:1,2,4是16和12公有的因数,叫做他们的公因数。

其中,4是最大的公因数,叫做他们的最大公因数。

2、完成教材第80页的“做一做”

先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

3、出示例2。怎样求18和27的最大公因数?

(1)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

(2)小组讨论,互相启发,再在全班交流。

(3)老师用多媒体课件和板书演示方法

方法一:先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

方法二:先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。

18的因数有:① ,2 ,③ ,6 ,⑨ ,18

方法三:先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

27的因数有:①,③,⑨,27

方法四:先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。

4、完成教材第81页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。

小结:求两个数最大公因数有哪些特殊情况?

⑴当两个数成倍数关系时,较小的数就是他们的最大公因数。

⑵当两个数只有公因数1时,他们的最大公因数是1。

三、课堂练习设计(多媒体课件出示)

选出正确答案的编号填在括号里

1、9和16的最大公因数是( )

A . 1 B. 3 C . 4 D. 9

2、16和48的最大公因数是()

A . 4 B. 6 C . 8 D. 16

3、甲数是乙数的倍数,甲乙两数的最大公因数是( )

A .1 B. 甲数C . 乙数D. 甲、乙两数的积

四、课堂小结

通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

五、留下疑问

有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?

六、课堂作业设计

教材82页第2题、第5题

板书设计

最大公因数

例2:怎样求18和27的最大公因数?

18的因数有:1 ,2 ,3 ,6 ,9 ,18

27的因数有:1 ,3 , 9 ,27

18和27的公因数有:1 ,3 , 9

18和27的最大公因数是9

《最大公因数》小学数学优秀教学设计 篇二

【教学目标】

1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

2、 使学生会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

【教学重、难点】

理解两个数的公因数和最大公因数的含义。

【教学准备】

学生准备12cm、宽8cm的长方形纸片,6张边长6cm的正方形纸片,8张边长4cm的正方形纸片。

【教学过程】

一、创设情境,激趣导课

1、这节课老师先请大家帮我解决一个问题:我们家有一个长18分米、宽12分米的贮藏室。现在老师想给贮藏室里铺上地砖。我在瓷砖市场看到两种砖,一种是边长为4分米的正方形瓷砖,一种是边长6分米的正方形瓷砖,你们帮我选一选,哪一种瓷砖能正好用整块铺满?

二、动手操作,探求新知

1、请同学们拿出准备好的长方形、正方形纸片,自己试着摆一摆。

2、生操作,师检查。

3、通过摆小正方形,我们发现了什么?老师应该选哪一种地砖?

(边长6分米的正好整块铺满,边长4分米的不能正好铺满 ,应该选边长6分米的地砖。

4、边长6分米的地砖长边和宽边各铺了几块?用算式怎样表示?地砖的边长6分米和贮藏室的长18分米,宽12分米有什么关系?

(长铺3块 18÷6=3

宽铺2块 12÷6=2 6即能被18整除,也能被12整除)

5、边长4分米的地砖不能正好铺满?长、宽边各铺了几次?用算式怎样表示?

(长铺了4次 18÷4=4…2

宽铺了3次 12÷4=3 4不能被长18整除,所以铺不满,能被12整除,所以宽能铺满)

6、比较两组算式,说说地砖的边长符合什么条件能用整块正好铺满?

边长既能被12整除,也能被18整除。

7、想象延伸

根据我们得出的结论,你在头脑里想一想,贮藏室还可以选择边长几分米的地砖?小组互相交流,并说说你是怎么想的?

(边长 1分米,2分米,3分米的正方形地砖都能正好整筷铺满,因为这3个数既能被12整除,也能被18整除。)

1、2、3、6这4个数与18有什么关系?与12呢?

8、揭示概念

讲述:1、2、3和6既是18的因数,又是12的因数,它们就是12和18的公因数。其中最大的公因数是6,6就是12和18的最大公因数。

9、4是18和12的公因数吗?为什么?

三、自主探索,用列举的方法求公因数和最大公因数。

1、刚才我们认识了公因数和最大公因数,那么怎样求两个数的公因数和最大公因数呢?接下来我们一起探究这个问题。

(自主探索)提问:12和8的公因数有哪些?最大公因数是几?

你能试着用列举的方法找一找吗?

2、交流可能想到的方法有:

①依次分别写出8和12的所有因数,再找出公因数

②先找8的因数,再从8的因数里找出12的因数

③先找12的因数,再从12的因数里找出8的因数

比较②、③种方法,这两种方法有什么相同之处?哪一种简单,为什么?(8的因数个数少。)

3、明确:8和12的公因数有1、2、4。4就是8 和12的最大公因数。

4、用集合图表示

8 和12的公因数也可以用集合圈来表示,我们用左边的圈表示8的因数,用右边的圈表示12的因数,那么相交的部分表示什么?应该填什么数?

提示不要重复填写,提问:6是12和8的公因数吗?为什么?3呢?8呢?

四、巩固练习

我们学会了用两种不同的方法来求两个数的公因数和最大公因数,下面我们来做一组练习。

1、练一练

自己完成,注意找的时候一对一对找,不要遗漏。

2、练习五的第一题、第2题、第3题,自己完成。

五、总结

这节课我们主要认识了公因数和最大公因数,掌握了求两个数的公因数和最大公因数的方法。这一知识在实际生活中应用非常广泛,下节课我们主要应用这一知识来解决实际问题。

《最大公因数》小学数学优秀教学设计 篇三

教学目标:

1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。

2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。

3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。

教学重点:

理解公因数与最大公因数的意义,用短除法求最大公因数的方法。

教学难点:

找公因数和最大公因数的方法。

教学过程:

一、情境导入

师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)

师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)

师:这只是我们的猜测,你要用具体的事实来说服大家。

二、解决问题

1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。

用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。

2、师:请每个组汇报一下你们摆的结果。

小组汇报

师:如何剪才能没有剩余?

师:那么这张纸能剪几张?

师:还有其他剪法吗?(2、3、6让学生充分进行交流)

师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的剪法呢?

独立观察,总结规律,教师根据学生的发言进行小结。

师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?

师:我们把这个数称为12和18的最大公因数

师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈

(用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)

师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)

3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法

学生探索并交流。

4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。

5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)

6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)

师引出最大公因数是它们共有质因数的乘积。

三、练习

1、用短除法求36和42的最大公因数。

2、生活中的数学:

用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?

3、拓展练习:

先分别找出下面各组数的最大公因数,再仔细观察,你发现了什么?

18和36 8和9

6和12 17和15

24和72 6和7

8和16 16和21

四、谈谈这节课你有什么收获?

《最大公因数》小学数学优秀教学设计 篇四

一、教学目标:

1、理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生抽象、概括的能力。

二、教学重难点:

理解公因数和最大公因数的意义。

三、教具准备:

多媒体课件,方格纸(每人一张)。

四、教学过程:

(一)复习导入

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。

(二)创设情境,引出问题

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

(三)求两个数的最大公因数

1.明确方法,提出要求。

师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

4.反馈练习。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)

(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

(五)谈谈这节课你有什么收获?

《最大公因数》小学数学优秀教学设计 篇五

教学内容:

人教版五年级第十册66-69页最大公因数。

教学目标:

1、理解公因数,最大公因数和互质数的概念。

2、初步掌握求最大公因数的一般方法。

3、培养学生思维的有序性和条理性。

4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。

教学重,难点:

1、理解公因数,最大公因数,互质数的概念。

2、求最大公因数的一般方法。

教具准备:

多媒体教学课件。

教学过程:

一,师生共研,学习新知:

我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?

出示课件:

16的因数有:1、2、4、8、16

12的因数:1、2、3、4、6、12

那么既是16又是12的因数是:1、2、4

16和12的公有因数中最大的一个是:4

出示课件:

16的因数:1、2、4、8、16

12的因数:1、2、3、4、6、12

8的因数:1、2、4、8

师:我们就把1、2、4叫做16、12和8的什么呢?

生:公因数

师:4就是16、12和8的什么呢?

生:最大公因数。

师:请同学用自己的话说一说公因数是什么意思?

生:几个数公有的因数,就叫公因数。

生:就是几个数都有的因数,就叫公因数。

师:同学谁能说一下什么又是最大公因数呢?

生:几个数公因数里面最大的一个,就叫最大公因数。

师生共同总结概念:

公因数:几个数公有的因数,叫做这几个数的公因数。

最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数

二、巩固练习,加深理解:

出示课件:

同学们能不能找出15和18的公因数,再找出它们的最大公因呢?

15的因数18的因数15的因数18的因数

不清

15和18的公因数

三、合作探究,认识互质数

1、5和7的公因数和最大公因数各是多少?

5的因数:1、5。7的因数:1、7。

5和7的公因数有:1.5和7的最大公因数是:1。

2、7和9呢?

7的因数:1,7。9的因数:1,3,9。

7和9的公因数有:1。7和9的最大公因数是:1

指名回答:并让学生说出自己的看法和理由。

师总结:公因数只有1的两个数,叫做互质数。

同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?

四、深化练习、掌握方法:

那么大家想一想18和30的最大公因数怎么去求呢?

小组讨论方法:小组代表发言汇报讨论结果。

师引导出用分解质因数的方法,

18=2×3×330=2×3×5

归纳出:18和30的公有的质因数是2和3,

那么最大公因数就是2×3=6

能不能用更简便的方法呢?

把两个短除法合并成一个短除法

21830→用公有的质因数2除

3915→用公有的质因数3除

35→除到两个商是互质数为止

把所有的除数乘起来,得到18和30的最大公因数是

2×3=6

学生总结短除法求最大公因数的方法。

求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的'商是互质数为止,然后把所有的除数连乘起来。

鼓励学生用不同的方法去完成练习。

求12和20的最大公因数

学生动手练习,师巡视指导,学生上黑板演示过程。

五、小小能手、我来闯关:

第一关:填一填

1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是()。

2.8和9的公因数有(),最大公因数是()

第二关:判一判

1.公因数有1的两个数是互质数()。

2.12的因数只有2、3、4、6、12。()

3.成为互质数的两个数一定都是质数。()

第三关:做一做

木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?

六、全课小节、畅谈收获:

学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。

七、板书设计:

最大公因数

公因数:几个数公有的因数。

最大公因数:公因数里最大的一个。

互质数:公因数只有1的两个数。

把18和30分别分解质因数

218230

39315

35

18=2×3×3

30=2×3×5

18和30的公有质因数是2和3,因此:

18和30的最大公因数是2×3=6

合并两个短除法

21830→用公有的质因数2除

3915→用公有的质因数3除

35→除到两个商是互质数为止

把所有的除数乘起来,得出18和30的最大公因数是2×3=6

教学反思

教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。

1.借助操作活动,经历概念的形成过程。

本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

2.预设探究过程,增强学生主体意识。

为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

3.提倡思考方法的多样化。

在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力

《最大公因数》小学数学优秀教学设计 篇六

教学目标

1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。

2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

教学重点

理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。

教学方法

小组合作探究 练习法

教学准备

小黑板出示复习题

教学过程:

一、温故而知新

1、温故——例1填一填、想一想。(让学生独立填写再反馈)

12的因数:1、2、3、4、6、12。

30的因数:1、2、3、5、6、10、15、30

2、引导学生思考:发现了什么?

让学生说出自己的感知,把话题集中到两个数的相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。

重点思考:两个集合圈相交的部分应该填哪些因数?

组织学生展开讨论交流反馈,同时引出本节课的课题前言:两个数的公因数

二、新知探究

1、两个数的公因数和最大公因数

(1)讨论反馈自己的发现

(2)公因数和最大公因数的概念。

2、怎样找两个数的最大公因数

(1)由学生根据前面的探究过程,很自然地提出列举法

(2)介绍短除法求最大公因数的方法

板书介绍,并试求12和30的最大公因数

学生试一试求下列各组的最大公因数

16和24 6和12 7和9

独立完成后指名板演,再进行集体讲评

议一议:用短除法求最大公因数要注意些什么?

让学生在思考后明确:必须除到两商除了1再没有别的公因数为止

思考:还发现了什么?

引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?

3、介绍互质数

(1)互质数的意义

(2)对互质数的探讨

质疑:互质数都是质数吗?互质数可以是怎样的两个数?1既不是质数也不是合数,它能与别的非零自然数组成互质数吗?

分析:2和3 4和15 8和9 12和6 1和18 4和25

在学生议后,得出公因数只有1的两个数有哪些。

并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)

三、练习深化

求下列各组数中的最大公因数。

24和30 7和9 18和6 31和3 38和57

可以让学生独立思才,哪几组数可以直接得出?

四、全课总结

1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。

2、正确判断两个数的互质关系。

五、布置作业

《最大公因数》小学数学优秀教学设计 篇七

教学目标:

1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。

2、培养学生分析、归纳等思维能力。

3、激发学生自主学习、积极探索和合作交流的良好习惯。

教学重点:

理解公因数和最大公因数的概念。

教学难点:

理解并掌握求两个数的最大公因数的方法。

教具准备:

课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。

教学过程:

一、创设情境,引导动手操作

1.情境导入

2.出示问题,明确要求。(理解重点要求,如整分米数,整块)

3.学生猜测可选用几分米的地砖。

4.介绍教具,明确活动要求。

5.小组活动。

二、自主探索,形成概念

1.展示学生作品,得出结果。

2.教师将不同铺法展示到课件上。

3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)

4.引出公因数和最大公因数的概念,揭示课题。

5.巩固练习课本80页做一做。

三、自主探究,掌握方法

1.怎样求两个数的最大公因数。

2.出示例2,独立思考,做在练习本上,指名板演,集体订正。

3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)

四、巩固练习,总结提升

1.81页做一做,独立思考,指名回答,集体订正。

2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)

五、小结

谈谈本节课有什么收获。

熟读唐诗三百首,不会做诗也会吟。快回答为大家整理的7篇《最大公因数》小学数学优秀教学设计到这里就结束了,希望可以帮助您更好的写作最大公因数。