1. 主页 > 知识大全 >

相反数教案优秀9篇

相反数 篇一

3.的相反数是.  例,……

随堂练习答案

1.略     2.C  B  D

作业 答案

(一)必做题:

1.(1)1.6,0.2,(2),3

2.16,-20,50,8.07,

(二)选作题:

1.(1)6,(2)9

2.(1);(2).

相反数 篇二

一、素质教育目标

(一)知识教学点

1.了解:互为相反数的几何意义.

2.掌握:给出一个数能求出它的相反数.

(二)能力训练点

1.训练学生会利用数轴采用数形结合的方法解决问题.

2.培养学生自己归纳总结规律的能力.

(三)德育渗透点

1.通过解释相反数的几何意义,进一步渗透数形结合的思想.

2.通过求一个数的相反数,使学生进一步认识对应、统一规律.

(四)美育渗透点

1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.

2.通过简化一个数的符号,使学生进一步体会数学的简洁美.

二、学法引导

1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.

2.学生学法:感性认识→理性认识→练习反馈→总结.

三、重点、难点、疑点及解决办法

1.重点:求已知数的相反数.

2.难点:根据相反数的意义化简符号.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

七、教学步骤

(一)探索新知,导入新课

1.互为相反数的概念的引出

演示活动:要一个学生向前走5步,向后走5步.

提出问题“如果向前为正,向前走5步,向后走5步各记作什么?

学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.

[板书]

+5, -5

师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.

[板书]2.3  相反数

【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)

师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

[板书]只有符号不同的两个数,其中一个叫另一个的相反数.

【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

2.理解概念

(出示投影1)

判断:(1)-5是5的相反数( )

(2)5是-5的相反数( )

(3)与互为相反数( )

(4)-5是相反数( )

学生活动:学生讨论.

【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

相反数 篇三

若 互为相反数,则 ,反之若 ,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数 篇四

教学目标

1.了解的意义,会求有理数的;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力。

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解的意义,理解的代数定义与几何定义的一致性。难点是多重符号的化简。“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

的定义 的性质及其判定 的应用

三、教法建议

这节课教学的主要内容是互为的概念。

由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、的相关知识

1.的意义

(1)只有符号不同的两个数叫做互为,如-1999与1999互为。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

(3)0的是0。也只有0的是它的本身。

(4)是表示两个数的相互关系,不能单独存在。

2.的表示

在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.的特性

若 互为,则 ,反之若 ,则 互为。

4.多重符号化简

(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数 篇五

3.的相反数是.  例,……

随堂练习答案

1.略     2.C  B  D

作业答案

(一)必做题:

1.(1)1.6,0.2,(2),3

2.16,-20,50,8.07,

(二)选作题:

1.(1)6,(2)9

2.(1);(2).

5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.

相反数教案 篇六

课题:相反数

教学目标:

(一)知识目标:借助数轴理解相反数的好处;会求一个数的相反数;会用相反数的定义对一个式子进行化简。

(二)潜力目标:透过观察相反数在数轴上所表示的点得特征,培养学生的归纳潜力以及数形结合思想。

教学重点:相反数的好处以及双重符号的化简。

教学难点:相反数的概念以及“-a”的理解。

教学过程:

(一)创设情境,引出新课

在一东西走向的公路上,小明和小红同时从某点以相同的速度2米每秒向相反的方向行走,小明向东,小红向西。若以向东为正反向,那么1s后,小明的位置,

小红的位置();2s后,小明的位置(),小红的位置();3s后,小明的位置(),小红的位置().

提问:以上三组数之间有什么相同点和不同点?

数字相同,符号相反。

(二)给出概念

只有正负号不同的两个数互为相反数。

口答:3.5的相反数?-2的相反数?-15的`相反数?

让学生们在数轴上表示出以上3组数以及0

思考:在数轴上,每组数所在的点的位置有什么关系?

(到原点距离相同)

讨论:0的相反数是什么?

0到原点的距离为0,数轴上到原点距离为0的点只有0,故0的相反数是0本身。

(三)深化探究

正数的相反数是()负数的相反数是()。

在任意的数前面加一个“-”号,就得到该数的相反数。

提问:以下各数表示的好处:

(1)-(+5)

(2)-(-6)

(3)-0

(4)-([www.kuaihuida.com]+1.2)

那么“-a”的好处?(数a的相反数)

“-a”是负数吗?

1.a为正数时,它的相反数-a是负数;2.a是负数时,它的相反数-a是正数;3.a为0时,-a为0.故-a不必须是负数。

(四)双重符号的化简

(1)-(+5)

(2)-(-6)

(3)-(+1.2)

(五)基础知识练习

1.决定正误。

(1)-2是相反数。

(2)-3和+3互为相反数。

(3)正数和负数互为相反数。

(4)若两个数互为相反数,则这两个数必须是一个正数,一个负数。

2.化简下列各数。

(1)-(+8)

(2)-(-3)

(3)+(-7)

(4)-(-a)

3.若-x=-7,则x=.

4.(1)若a和1-a互为相反数,那么a=()

A.0B.-1C.1D.-2

(2)若一个数的相反数是非负数,那么这个数是()

A.0B.负数C.非正数D.正数

(五)本节小结

(六)课后思考及作业

思考:如果a大于-a,那么a在数轴上的位置?

如果a小于-a,那么a在数轴上的位置?

相反数 篇七

(1)只有符号不同的两个数叫做互为相反数,如-与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

相反数 篇八

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

1.相反数的意义

(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.相反数的特性

若 互为相反数,则 ,反之若 ,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数 篇九

3

-7

倒数

-1

2.选择题

(1)下列说法中,正确的是( )

A.一个数的相反数一定是负数

B.两个符号不同的数一定是相反数

C.相反数等于本身的数只有零

D.的相反数是-2

(2)下列各组九中,是互为相反数的组数有( )

①和②-(-1)和+(-1)

③-(-2)和+(+2) ④和

A.4组 B.3组 C.2组 D.1组

(3)下列语句中叙述正确的是( )

A.是正数

B.如果,那么

C.如果,那么

D.如果是负数,那么是正数

九、布置作业

(一)必做题:课本第61页A组2、3.

(二)选做题:课本第62页B组1、2.

十、板书设计

2.3   相反数

1.只有符号不同的两个数其中一个是另一个的相反数.

博观而约取,厚积而薄发。以上9篇相反数教案就是快回答小编为您分享的相反数教案的范文模板,感谢您的查阅。