相反数 篇一
3.的相反数是. 例,……
随堂练习答案
1.略 2.C B D
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
相反数 篇二
一、素质教育目标
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3 相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数( )
(2)5是-5的相反数( )
(3)与互为相反数( )
(4)-5是相反数( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
相反数 篇三
若 互为相反数,则 ,反之若 ,则 互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
相反数 篇四
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性。难点是多重符号的化简。“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
相反数 篇五
3.的相反数是. 例,……
随堂练习答案
1.略 2.C B D
作业答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
相反数教案 篇六
课题:相反数
教学目标:
(一)知识目标:借助数轴理解相反数的好处;会求一个数的相反数;会用相反数的定义对一个式子进行化简。
(二)潜力目标:透过观察相反数在数轴上所表示的点得特征,培养学生的归纳潜力以及数形结合思想。
教学重点:相反数的好处以及双重符号的化简。
教学难点:相反数的概念以及“-a”的理解。
教学过程:
(一)创设情境,引出新课
在一东西走向的公路上,小明和小红同时从某点以相同的速度2米每秒向相反的方向行走,小明向东,小红向西。若以向东为正反向,那么1s后,小明的位置,
小红的位置();2s后,小明的位置(),小红的位置();3s后,小明的位置(),小红的位置().
提问:以上三组数之间有什么相同点和不同点?
数字相同,符号相反。
(二)给出概念
只有正负号不同的两个数互为相反数。
口答:3.5的相反数?-2的相反数?-15的`相反数?
让学生们在数轴上表示出以上3组数以及0
思考:在数轴上,每组数所在的点的位置有什么关系?
(到原点距离相同)
讨论:0的相反数是什么?
0到原点的距离为0,数轴上到原点距离为0的点只有0,故0的相反数是0本身。
(三)深化探究
正数的相反数是()负数的相反数是()。
在任意的数前面加一个“-”号,就得到该数的相反数。
提问:以下各数表示的好处:
(1)-(+5)
(2)-(-6)
(3)-0
(4)-([www.kuaihuida.com]+1.2)
那么“-a”的好处?(数a的相反数)
“-a”是负数吗?
1.a为正数时,它的相反数-a是负数;2.a是负数时,它的相反数-a是正数;3.a为0时,-a为0.故-a不必须是负数。
(四)双重符号的化简
(1)-(+5)
(2)-(-6)
(3)-(+1.2)
(五)基础知识练习
1.决定正误。
(1)-2是相反数。
(2)-3和+3互为相反数。
(3)正数和负数互为相反数。
(4)若两个数互为相反数,则这两个数必须是一个正数,一个负数。
2.化简下列各数。
(1)-(+8)
(2)-(-3)
(3)+(-7)
(4)-(-a)
3.若-x=-7,则x=.
4.(1)若a和1-a互为相反数,那么a=()
A.0B.-1C.1D.-2
(2)若一个数的相反数是非负数,那么这个数是()
A.0B.负数C.非正数D.正数
(五)本节小结
(六)课后思考及作业
思考:如果a大于-a,那么a在数轴上的位置?
如果a小于-a,那么a在数轴上的位置?
相反数 篇七
(1)只有符号不同的两个数叫做互为相反数,如-与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。
(3)0的相反数是0。也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
相反数 篇八
教学目标
1.了解相反数的意义,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义 相反数的性质及其判定 相反数的应用
三、教法建议
这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
1.相反数的意义
(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。
(3)0的相反数是0。也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示
在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.相反数的特性
若 互为相反数,则 ,反之若 ,则 互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
相反数 篇九
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是( )
A.一个数的相反数一定是负数
B.两个符号不同的数一定是相反数
C.相反数等于本身的数只有零
D.的相反数是-2
(2)下列各组九中,是互为相反数的组数有( )
①和②-(-1)和+(-1)
③-(-2)和+(+2) ④和
A.4组 B.3组 C.2组 D.1组
(3)下列语句中叙述正确的是( )
A.是正数
B.如果,那么
C.如果,那么
D.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页A组2、3.
(二)选做题:课本第62页B组1、2.
十、板书设计
2.3 相反数
1.只有符号不同的两个数其中一个是另一个的相反数.
博观而约取,厚积而薄发。以上9篇相反数教案就是快回答小编为您分享的相反数教案的范文模板,感谢您的查阅。