1. 主页 > 知识大全 >

分数乘法的教案(优秀6篇)(分数乘法的教案设计)

作为一名优秀的教育工作者,就难以避免地要准备说课稿,说课稿可以帮助我们提高教学效果。说课稿应该怎么写才好呢?下面的6篇分数乘法的教案是由快回答精心整理的分数乘法范文模板,欢迎阅读参考。

分数乘法 篇一

课时1:分数乘法应用题

教学内容:教科书第69页例1,“做一做”及练习十四第1~5题。

教学目的:使学生初步掌握求一个数的几分之几是多少的乘法应用题的解答方法。

教学重点:通过线段图理解分析分数一步乘法应用题的数量关,建立求一个数的几分之几是多少,用乘法计算的解题思路。

教学过程:

一、复习

1.口算下列各题,并选其中两题说一说算式的意义。

×2 ×3 25× ×39 40×

× × × × ×

2.根据意义,列出算式。

4个 20个 70个

4的 20的 70的

二、新授

揭示课题并板书:分数乘法应用题

1.出示准备题。

20的 是多少?6的 是多少?

学生回答后小结。

2.出示例1。

学校买来100千克的白菜,吃了 ,吃了多少千克?

(1)教师边指导学生读题边画线段图。图略。

(2)提问:已知条件是什么?所求问题是什么?(在线段图上指出来。)

吃了谁的 ?

吃了100千克的 ,就是把100千克平均分成几份?吃了其中的几份?

(3)根据学生回答列式。板书:解法一:100÷5×4=80(千克)

(4)教师小结,并引入第二种解法。

上面这个解法是根据已学过的整数乘除法来解答的。我们还可以根据分数乘法的意义直接用分数乘法来解答。板书:解法二:

(5)提问。

吃了 ,是吃了谁的 ?

应该把那个数量看作单位“1”?

要求吃了100千克的 是多少,该怎样计算?根据什么列出乘法算式?

(6)列式解答:解法二100× =80(千克)

答:吃了80千克。

3.教师小结。

上题“吃了 ”是指吃了100千克的 ,把100千克看作单位“1”,要求100的 是多少?根据一个数乘以分数的意义来列式解答。以后我们遇到这类乘法应用题时就应该用解法二,即根据分数乘法的意义来列式解答。

三、复习巩固

完成第69页“做一做”中的题目。练习题后再让学生试着讲一讲,把哪个数量看作单位“1”,根据什么列式解答。求一个数的几分之几是多少,用什么方法计算。

四、全课总结

今天这节课,我们学习了分数乘法应用题。要注意认真读题,弄清题意,看谁把什么数量看作单位“1”,然后根据分数乘法的意义,来解分数乘法应用题。

五、作业

练习十四第1~5题。

课时2:巩固练习

教学目的和重点:会根据题意作出线段图,正确解题

教学过程:

1. 复习 (作出线段图列式计算)

(1)320亩的 是多少亩? (2)40吨油的 是多少吨?

2. 补充 相关例题。 (2~3应用题)

理解题意确定单位1,作出线段图。

列式计算。

3. 小结

4. 作业 p71~72 / 6~10 补充相关题目。

课时3:求一个数的几分之几是多少的带分数应用题

教学内容:第70页例2,“做一做”及练习十四第11~16题。

教学目的:能准确地确定单位“1”,根据分数乘法的意义,理顺思路,列式计算。

教学重点:通过线段图理解分析分数一步乘法应用题的数量关,建立求一个数的几分之几是多少,用乘法计算的解题思路。

教学过程:

1. 复习。 的 是多少? 的 倍是多少?

五年级有学生18人,参加数学竞赛的占全年级学生数的1/3,参加数学竞赛的有多少人?

2. 新授 例2、小林身高1(3/5)米,小强身高是小林的7/8,小强身高多少米?

1)让学生读题

2)利用线段图示帮助理解题意

想:小强身高是小林的7/8,就要把小林的身高看作单位“1”。要求1(3/5)的7/8是多少,根据分数乘法的意义,也用乘法计算。

1(3/5)×7/8=7/5=1(2/5)(米)

答:小强身高1(2/5)米。

想一想:如果把上题改成下面的题:

小强身高1(2/5)米,小林身高是小强的1(1/7)倍,小林身高多少米?

1)让学生读题

2)利用线段图示帮助理解题意

想:小林身高是小强的1(1/7)倍,就要把小强的身高看作单位“1”。

1(2/5)×1(1/7)=7/5×8/7=8/5=1(3/5)(米)

答:小林身高1(3/5)米。

3. 练习 p71 做一做 并补充相关练习。

4. 小结

5. 作业 p72 / 11~16 (分析15,16)

课时4:混合练习

教学目的:牢固确立,求一个数的几分之几是多少用乘法计算的解题思路,比较熟练地借助线段图来分析应用题数量关系。

教学过程:

1. 分析作业中存在的问题,并予以解决。

2. 补充相关应用题 (2~3道)。

读题 讨论 作图 解题。

3. 分析讲解 p73~74/ 18、20、21

4. 小结

5. 作业 p73~74/17~22.

(17注意:单位“1”是去年种的花生数。

18注意:单位 “1”都是180千克。

19注意:单位“1”是排球的定价。

20第一小题的单位“1”是计划耕地。

第二小题是减法。

21注意:单位“1”是小汽车的1/10。

22注意:他们的单位“1”都是小雄的9(1/5)分。)

《分数乘分数》教学设计 篇二

《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。

在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:

一、 引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、 以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。

三、 学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。

通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

分数乘法说课稿 篇三

一、说教材

1、教材分析:

“整数乘法运算定律推广到分数乘法”是在学生已经掌握了分数乘法计算、整数乘法运算定律、整数乘法运算定律推广到小数乘法的基础上进行教学的。教材通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对分数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些分数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。

2、教学目标的确定:

根据教材特点,依据数学课程标准的要求及学生实际,我确定本课教学目标如下:

(1)知识能力目标:理解整数乘法运算定律对于分数乘法用样适用,并能应用这些定律进行一些简便计算。

(2)过程方法目标:引导学生在经历猜想、验证等数学活动中,发展学生的思维能力。

(3)情感态度目标:通过小组合作学习,培养学生进行交流的能力与合作意识,体验到解决问题策略的多样性。结合相关内容,渗透“事物间是普遍联系”的观点,对学生进行辨证唯物主义的启蒙教育。

3、教学重点、难点:

重点:能运用运算定律对一些分数计算采用简便的算法;

难点:学生能掌握运算定律,根据题目的特征,灵活、合理地进行计算。

4、教具:

多媒体课件。

二、说教法和学法

在本课的教学中,我坚持“以人为本”的理念,充分利用知识间的内在联系,向学生提供了充分从事数学活动的机会,让学生在自主探索、合作交流的过程中得到发展。通过创设问题情境,引发学生的认知冲突,进而组织学生猜想,让学生自由地、充分地发表观点后,引导学生自行设计方案来验证猜想,开放了教学的时空。在这样的设计下,学生的思路突破了教材的束缚,使学习数学的过程真正成为了生动活泼的、主动的、富有个性的过程。学生在学习过程当中,从个体尝试到小组间交流,再到全班汇报,步步为营,层层递进,获得成功体验,增强了学习数学的自信心。

三、说教学过程

在教学过程中,我安排了六个环节进行数学活动,分别是:复习铺垫,引出新知;质疑猜想,展开验证;实践新知,应用提高;加强对比,沟通联系;巧设练习,巩固提高;反思体验,总结评价。

(一)复习铺垫,引出新知

知识的获取靠积累,根据小学生掌握知识的遗忘规律,在教学新课前,我设计了以下练习,对已学知识进行巩固、温习,架起与新知识间的桥梁,达到温故知新的目的。课件出示:

(二)质疑猜想,展开验证

在学生完成练习后,我创设了这样一个问题:整数乘法运算定律可以推广到小数乘法,不知道能不能推广到分数乘法?我这样问的目的'是引发学生的认知冲突,刺激他们的求知欲望,进而组织学生猜想,我鼓励学生大胆发表自己的观点。如果学生都说整数乘法运算定律能适用于分数乘法的计算时,我会这样告诉他们,毕竟这是你们的猜想,最好我们能进行验证。为了引导学生自行设计方案来验证猜想,我设计了这样一个四人小组合作活动:用1/2、1/3、1/5这三个分数,根据运算定律,设计一种方案,看看整数运算定律到底能不能推广到分数乘法中。学生经过交流,可能会这样汇报:

1、乘法交换律:

2、乘法结合律:这说明乘法结合律同样适用于分数乘法。

3、乘法分配律:

所以这说明乘法分配律适用于分数乘法。

在学生汇报这几种方案时,一定还有其他符合这三种定律而方案不尽相同的,只要不完全一样,我都鼓励大家说一说,这样更具验证说服力。让学生通过小组合作学习,给学生创设了观察、思考、交流的机会,学生的思路突破了教材的束缚,使学生学习数学的过程真正成为生动活泼的、主动的、富有个性的过程。学生汇报完毕后,我领着学生进行小结:整数乘法的运算定律对分数乘法同样适用,应用乘法运算定律,同样也可以使一些分数计算简便。

(三)实践新知,应用提高

使学生获得成功体验,增强学习数学的自信心,最好的办法就是让学生实践自己探究出的新知。因此我出示例5、例6后,要求学生运用运算定律,用简便方法进行计算,在此我不作任何提示,让学生独立完成计算。完成计算后,先在小组内交流着重讨论:计算中应用了什么定律?这样算,避免了什么麻烦?最后我再组织全班反馈,指定学生到黑板上进行演示汇报。

(四)加强对比,沟通联系

为了帮助学生形成良好的认知结构,我引导学生观察对比例5、例6和复习的第2题,说说各自的看法。同学们经过比较,发表了自己的观点,我根据他们的回答,归纳了这三组题的异同点:相同点——都应用了乘法运算定律,使计算简便了;不同点——整数、小数中,一般是将乘积为整十、整百、整千……的数,先乘起来,分数中,一般是将能直接约分的数先乘起来。

(五)巧设练习,巩固提高

学生利用所学知识解决问题,是发展创新意识的阶段。为了实现新课程标准提出的“人人学有价值的数学,不同的人在数学上得到不同的发展”这一基本理念,体现出“以人为本”的教育观念。我设计了多种层次的练习,包括能力提高(一)、能力提高(二)思考题三个部分。

(六)反思体验,总结评价

让学生回顾这节课学习的内容说说自己有何收获,以及自己、同学本节课的学习情况。引导学生理清知识结构,形成完整认识,并通过自评和互评,使学生受到与他人合作共事的自我教育。

分数乘法 篇四

案例背景:

本案例的教学内容是人教版第十一册“整数乘法运算定律推广到分数乘法”。在教学过程中,我尝试着从单纯的计算技能教学走出去,运用“再创造”原理对教材进行了第二次开发,取得了良好的教学效果。现摘取其中的几个片断,供大家欣赏。

片断㈠:

教师在黑板上出示两道乘法算式:

12×4 4×12

提问:它们相等吗?(学生回答后教师用等号连接两个算式)12×4=4×12

师:看到这个算式你回忆起了什么知识?

生:乘法交换律。

师:你能用字母表示乘法的交换律吗?

生:a×b=b×a。

师:这里的字母可以表示什么数?

生:字母a和b可以表示分数、小数、整数。

师:字母a和b能表示分数,你能举例说明吗?

生1: 1/2×1/3=1/6, 1/3×1/2=1/6,所以1/2×1/3=1/3×1/2。两个分数交换他们的位置积不变。

生2: 1/4×4/5=1/5, 4/5×1/5=1/5,所以1/44/5=4/51/4。我认为分数乘法中也有乘法交换律。

生3: 1/2×3/5=3/10, 3/5×1/2=3/10,所以1/2×3/5=3/5×1/2。乘法交换律在分数中同样适用。

师:对,整数乘法运算定绿的分数乘法中同样适用。

片断㈡:

出示题组:(3/4+1/5)×4 (1/3+2/7)×5

师:请同学们仔细观察这两题中每一个数的特点,动笔前思考怎样算比较简便?

生1:第一题运用乘法的分配律可以使计算简便。(3/4+1/5)×4=3/4×4+1/5×4。

生2:第二题这样计算比较简便。(1/3+2/7)×5=1/3×5+2/7×5。

生3:我认为第二题这样算不简便。先算括号里的加法比较好,而第一题用分配律做简便。

师:第一题简便计算的方法大家一致,第二题有两种不同意见。老师建议每个人把这两种方法都是试一试,自己体验怎么做比较好。

学生完成计算后交流。

生1:我认为两种方法都可以,随便选择哪一种。

生2:我认为用乘法分配律做反而麻烦,先算括号里的加法比较好。同分时分母小,好计算。

生3:我认为用分配律做这一题并不简便。

师:第二题的数怎么改用乘法分配律做就比较简便呢?

生1:1/3改成1/5。

生2:2:2/7改成1/5。

生3:两个数都改,1/3改成1/5,2/7改成2/5。

生4:把乘5改成乘7或乘5改成乘3。

师:如果括号里的分数不变,括号外面的数怎么改可以使计算变得更简便?

生5:我想可以改成21,但不知对不对。

生6:对!对!应该是3和7的公倍数。

生7;应该是3和7的最小公倍数,是分母的最小公倍数。

课后记:

以题组形式出示两道例题,引导学生先观察后计算,有利于培养学生良好的计算习惯。封闭的计算题实施开放式教学,为计算教学注入了活力,学生兴趣高涨,思维活跃。是一种技能,更是一种意识。我们在教学中发现:具有明显简算特征的计算题,学生能够熟练的运用定律进行简便计算;而特征不明显,需要转化之后才能简算的题目,学生不知道如何去寻求简算,部分学生往往不假思索地或按部就班地计算,或不能简算的却在生 拼硬凑想简算。技能熟练意识欠缺,是简便计算教学中的一个常见现象。在这节课中,以题组的形式出示两道例题,引导学生在比较分析中发现问题并解决问题,培养了学生的简算意识。

分数乘法说课稿 篇五

教学目标

1、通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。

2、发展学生的观察推理能力。

教学准备

1、多媒体课件。

2、每个学生准备一张长15 cm、宽10 cm的长方形纸。

重点难点:

分数乘分数的计算方法。

教学过程

一、创设情境引入新课

(教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入) 出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。 师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“2小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×2)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了2小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“2小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求2小时粉刷这面墙的几分之几,就是求2个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。 板书课题:分数乘分数

二、操作探究计算算理

师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。 学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示1/5的3/4。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

3/4 x 2/9 4/7 x 7/8 5/6 x 3/25 7/12 x 9/14让学生独立计算。通过请学生在黑板演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

学生独立完成“做一做”。

课后反思

通过今天的课我对数形结合的思想有了进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元的教学中数形结合的思想就显得尤为重要了,

分数乘法教案 篇六

1、分数乘法

(1)分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程:

一、复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

1/6+2/6 +3/6 = 3/10+3/10 +3/10 =

2.引出课题。

++这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、新授

1、 利用3/10 +3/10 +3/10 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是)

(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)

(3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成做一做第2题。

5、 教学例2

(1)出示 6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、练习

1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

四、作业

练习二第1、2、4题。

(2)一个数乘分数

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教学过程:

一、导入

1、计算下列各题并说出计算方法。

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3

(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?

(3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。

(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据速度时间=路程的。数量关系列出算式。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。

(3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。

5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个 是多少?算式: 2

(2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。

(3)分数混合运算和简便运算

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)362+15 (2)56+73 (3)15(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1) +(2)- (3)-(4)+

2、复习整数乘法的运算定律

(1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:2574 0.36101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课

教学目标:

1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

教学过程:

一 、复习

1、复习分数混合运算的运算顺序。

2、复习乘法的简便运算定律

乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

二、巩固练习

1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

三、布置作业

完成相关的练习册。

(5)分数乘法整理与复习

教学目的:

1.分数乘法的计算方法

2.分数乘加、乘减混合运算

3.熟练掌握运算定律,并运用运算定律进行简便计算。

教学重点:

1.分数乘法的计算方法

教学难点:

运算定律进行简便计算

教学过程:

一、复习分数乘法的计算方法

30 ===

60 ===

12 ==

二、复习分数乘加、乘减混合运算。

+ 1- (1- )

7+ 120(+)

三、复习分数的运算定律并进行简便计算。

+12- - 48+48 24( - )

四、相关文字题复习

1、4的与的4倍的和是多少? 2、 的 比它的 多多少?

五、相关的解决问题。

1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?

2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?

3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?

六、拓展练习。

海纳百川,有容乃大。以上这6篇分数乘法的教案是来自于快回答的分数乘法的相关范文,希望能有给予您一定的启发。