1. 主页 > 知识大全 >

初一数学教案【优秀10篇】(初一上册数学正负数的认识教案)

作为一位兢兢业业的人民教师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?下面快回答为大家整理了10篇初一数学教案,希望可以帮助您更好的写作初一数学教案。

初一数学教案 篇一

一、教学目标

1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。

2.能用适当的图形和语言表示自己的思考结果。

二、教学重点和难点

本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。

三、教学手段

引导活动讨论

引导:意在教师讲解七巧板的历史,七巧板制作的方法。

活动:人人参与制作七巧板,拼摆七巧板的图案。

讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。

四、教学方法

启发式教学

五、教学过程

1 创设情景,引入新课

先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。

2 合作交流,探索新知

利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。

(1) 你的拼图用了什么形状的板?你想表现什么?

(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。

(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。

通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。

3 范例教学

介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。

4 反馈练习

由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。

5 归纳小结

通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。

六、练习设计

利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。

七、板书设计

4.7有趣的七巧板

(一)知识回顾 (三)例题解析 (五)课堂小结

(二)观察发现 (四)课堂练习 练习设计

初一数学教案 篇二

一、学习与导学目标:

知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

A、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

B、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

C、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?

4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习),

5、概念

四、练习与拓展选题:

1、教科书P18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学教案 篇三

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:

理解有序数对的概念,用有序数对来表示位置。

学习难点:

理解有序数对是有序的并用它解决实际问题,

学习过程:

一、学前准备

预习疑难

二、探索与思考

1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上6排3号与3排6号有什么不同?

(3)如果将6排3号简记作(6,3),那么3排6号如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:

①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、理解与运用

用有序数对来表示位置的情况是很常见的如人们常用经纬度来表示地球上的地点。你有没有见过用其他的方式来表示位置的?

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测

1、小游戏:

怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置。如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置。那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

2、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

初一数学教案 篇四

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3.通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.具有初步的创新精神和实践能力。

教学重点

1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点

1.探索方程与函数之间的联系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法

讨论探索法。

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2.看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法例题

1.因式分解的定义

2.提公因式法

初一数学教案 篇五

学习目标:

理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。

学习重点:

多项式乘法法则及其应用。

学习难点:

理解运算法则及其探索过程。

一、课前训练:

(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

(3)3a2b2 ab3 = , (4) = ;

(5)- = ,(6) = 。

二、探索练习:

(1)如图1大长方形,其面积用四个小长方形面积

表示为: ;

(2)大长方形的长为 ,宽为 ,要

计算其面积就是 ,其中包含的

运算为 。

由上面的问题可发现:( )( )=

多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 以另一个多项式的每一项,再把所得的积 。

三。运用法则规范解题。

四。巩固练习:

3.计算:① ,

4.计算:

五。提高拓展练习:

5.若 求m,n的值。

6.已知 的结果中不含 项和 项,求m,n的值。

7.计算(a+b+c)(c+d+e),你有什么发现?

六。晚间训练:

(7) 2a2(-a)4 + 2a45a2 (8)

3、(1)观察:4×6=24

14×16=224

24×26=624

34×36=1224

你发现其中的规律吗?你能用代数式表示这一规律吗?

(2)利用(1)中的规律计算124×126。

4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。

(1)设AP= ,求两个正方形的面积之和S;

(2)当AP分别 时,比较S的大小。

初一数学教案 篇六

教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征

知识重点相反数的概念

教学过程(师生活动)设计理念

设置情境

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

4,-2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结1,相反数的定义

2,互为相反数的数在数轴上表示的点的特征

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题

2,选做题教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的。应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

课题:1.2.4绝对值

教学目标1,掌握绝对值的概念,有理数大小比较法则。

2,学会绝对值的计算,会比较两个或多个有理数的大小。

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

教学难点两个负数大小的比较

知识重点绝对值的概念

教学过程(师生活动)设计理念

设置情境

引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负

数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体

验数学知识与生活实际的联系。

七年级数学教案 篇七

教学目标

1.使学生掌握代数式的值的概念,会求代数式的值;

2.培养学生准确地运算能力,并适当地渗透对应的思想.

教学重点和难点

重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.

难点:正确地求出代数式的值.

课堂教学过程设计

一、从学生原有的认识结构提出问题

1.用代数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%.

2.用语言叙述代数式2n+10的意义.

3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

二、师生共同研究代数式的值的意义

1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.

2.结合上述例题,提出如下几个问题:

(1)求代数式2n+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

当教师引导学生说出:“代数式的`值是由代数式

里字母的取值的确定而确定的”之后,可用图示帮助

学生加深印象.

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

例1?当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70.

注意:如果代数式中省略乘号,代入后需添上乘号.

解:(1)当a=4,b=12时,

a2-=42-=16-3=13;

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

最后,请学生总结出求代数值的步骤:

①代入数值?②计算结果

三、课堂练习

1.(1)当x=2时,求代数式x2-1的值;

2.填表:(投影)

(1)(a+b)2;?(2)(a-b)2.

四、师生共同小结

首先,请学生回答下面问题:

1.本节课学习了哪些内容?2.求代数式的值应分哪几步?

3.在“代入”这一步应注意什么?

其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

五、作业

1.当a=2,b=1,c=3时,求下列代数式的值:

2.填表

3.填表

初一数学教案 篇八

多边形及其内角和

知识点一:多边形的概念

⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________.

如果一个多边形由n条线段组成,那么这个多边形叫做____________.(一个多边形由几条线段组成,就叫做几边形.)

多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序。如五边形ABCDE.

⑵多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________.

⑶多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做___________________.画一个五边形ABCDE,并画出所有的对角线。知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形.

知识点二:正多边形

各个角都相等,各条边都相等的多边形叫做_____________.

探究多边形的对角线条数

知识点三:多边形的内角和公式推导

1、我们知道三角形的内角和为__________.

2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.

3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?

4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?

探究1:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,?量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。

探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:

(1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.

(2)从六边形的一个顶点出发,可以引_____条对角线,

它们将六边形分为_____个三角形,六边形的内角和等于180°×______.探究3:一般地,怎样求n边形的内角和呢?请填空:

从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.

综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则

n边形的内角和等于______________.

想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

知识点四:多边形的外角和

探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

问题:如果将六边形换为n边形(n是大于等于3的。整数),结果还相同吗?多边形的外角和定理:.理解与运用

例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

自我检测:

(一)、判断题.

1.当多边形边数增加时,它的内角和也随着增加.()

2.当多边形边数增加时.它的外角和也随着增加.()

3.三角形的外角和与一多边形的外角和相等.()

4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()

5.四边形的四个内角至少有一个角不小于直角.()

(二)、填空题.

1.一个多边形的每一个外角都等于30°,则这个多边形为

2.一个多边形的每个内角都等于135°,则这个多边形为

3.内角和等于外角和的多边形是边形.

4.内角和为1440°的多边形是

5.若多边形内角和等于外角和的3倍,则这个多边形是边形.

6.五边形的对角线有

7.一个多边形的内角和为4320°,则它的边数为

8.多边形每个内角都相等,内角和为720°,则它的每一个外角为

9.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠.

10.四边形的四个内角中,直角最多有个,钝角最多有锐角最

(三)解答题

1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?

2、在每个内角都相等的多边形中,若一个外角是它相邻内角的则这个多边形是几边形?

3、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。

4、一个多边形的每一个内角都等于其相等外角的

5.一个多边形少一个内角的度数和为2300°.

(1)求它的边数;(2)求少的那个内角的度数.

初一数学教案 篇九

教学内容分析

教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。

根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。

教学目标

知识目标

知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。

能力目标

通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。

情感目标

经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。

教学重点

三角形三边关系的实验与探究

教学难点

三角形三边关系的探究过程。

教学关键

使学生理解三角形边的关系

教学准备

课件、三根小棒、三边关系试验报告单每组四根小棒

教学方法

自主探究小组讨论

课程类型

学科课程

教学过程

活动的组织与实施(含教师活动和学生活动)

设计意图

时间分配

一、复习旧知,导入新课

我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

复习旧的知识,使新旧知识之间有很好的连接

2分钟

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)

1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流

2、动手操作,寻找规律(师巡视,并指导)

3、交流汇报,探究规律。

师:哪个小组愿意来汇报。小组上台展示,

3厘米、8厘米、10厘米能

3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。

(课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8重合了不能

师:是这样吗?(课件演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。

3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、运用结论,加深理解

师:我们已经知道三角形的三边关系,下面让我们来判断几道题目

1、快速判断。

3cm、5cm、() 4cm

7cm、4cm、() 2cm

6cm、3cm、() 1cm

2cm、3cm、() 3cm

师:为什么围不成?你是怎么判断的?

2、出示P82例3图

这是小明上学的'路线图,同学们仔细看一看,他可以怎样走?

3、这几条路中,哪条最近?这是为什么呢?

老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力

通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象

3分钟5分钟7分钟3分钟5分钟10分钟5分钟

板书设计

三角形边的关系两边之和大于第三边

教学反思

本节课巩固应用部分的三个环节,是从学生的学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。

以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。

初一数学教案 篇十

7.3.1多边形

[教学目标]

1.了解多边形及有关概念,理解正多边形及其有关概念.

2.区别凸多边形与凹多边形.

[教学重点、难点]

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

[教学过程]

一、新课讲授

投影:图形见课本P84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本P85.7.3—6.

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本P86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本P90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形ABCDEF的所有对角线.

2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

海纳百川,有容乃大。快回答为大家整理的10篇初一数学教案到这里就结束了,希望可以帮助您更好的写作初一数学教案。