1. 主页 > 知识大全 >

植树问题教案优秀5篇(植树问题数学教案)

作为一名优秀的教育工作者,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?下面这5篇植树问题教案是快回答为您整理的植树问题范文模板,欢迎查阅参考。

植树问题教案 篇一

学习目标:

1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

2.使学生经历和体验复杂问题简单化的。解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

学习过程:

一、知识铺垫

马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

1. 你都知道了些什么?

2. 一共要栽多少棵树?你是怎样想的。

二、自主探究

大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

1. 你都知道了 。

2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

总结

植树问题

总长( )=( )

两 端 栽: 棵 数=( ) +1

一 端 栽: 棵 数=( )

两端不栽: 棵 数=( ) -1

三、课堂达标

1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

植树问题教案 篇二

【教学内容】:

人教版四年级下册第120页第八单元例3

【教材分析】

本次教学内容属于第二学段中“实践与综合应用”领域的教学。

“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

【学情分析】

学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

【教学目标】

1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。

→www.kuaihuida.com←

【教学重、难点】

教学重点:让学生掌握解决封闭图形植树问题的思维方法。

教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

【教学设想】

本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

【教学过程】

一、创设情景,引入问题

1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

3. 出示问题一:古柳周围正方形台面要摆花,边长是9米,每隔一米摆一盆,请大家帮助算一算,只摆其中一边需要多少盆花?

4. 组织学生反馈::9÷1+1=10盆

小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

5.出示问题二:如果古柳周围的正方形台面四周都要摆上10盆花,一共需要多少盆花呢?

预设生1:40盆,生2:36盆。

5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

〖通过展示生活中常见的花坛中鲜花组成的图案,结合生活实际创设装点校园的情境,激发学生学习兴趣,调动学生学习的主动性。引出生活中的数学问题,激发学生探究欲望。〗

二、多元表征,感知模型

1.出示学习建议:

(1)请利用老师提供的`材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

(2)画好后先独立思考,再在小组中说一说你的方法。

〖把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。〗

2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

预设:生1:10×2=20,8×2=16 20+16=36;生2:9×4=36;生3:8×4+4=36;生4:10×4-4=36; 〖通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。〗

3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

〖通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。〗

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

三、探索规律,有效建模

1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

每边6盆,一共要多少盆?每边4盆,一共要多少盆?

2.组织反馈:你是怎么算的?(结合图说明算式的意思)

3.组织讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

小结:我们将正方形,三角形,六边形等图形作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)×边数=盆数

4.拓展练习、提出问题:圆形花坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

学生利用材料自主探索。

5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

小结:花盆数=间隔数

〖组织学生利材料自主设计,并进行交流讨论,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。〗

6.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

(1)学生利用材料自主探索

(2)组织交流反馈

(3)动态演示:将这些图形拉伸为圆,并转化为线段。

小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

〖通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。〗

四、拓展提升,实践应用

1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

2.组织学生汇报。

3.小结

通过今天这节课的学习,你有什么收获?

植树问题教案 篇三

教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1

教学目标:

1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学过程:

1、课前谈话:

今天来这里上课,有什么不同的感觉?

老师挺高兴的,这么多人,正好做一个公益宣传,请看--

春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

一、创设情境,出示问题(2分钟)

1、揭示课题(2分钟)

师:你们觉得种树与数学有联系吗?

生:间隔,米数等等问题。

师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

2、出示问题

课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

二、化繁为简,解决问题(26分钟)

1、理解信息(2分钟)

师:能看懂吗?告诉我们哪些信息?

生:全长100米,每隔5米等等

师:每隔5米是什么意思?

生:就是两棵树之间的“间隔”;

师:“间隔”这个词听过吗?能举几个例子吗?

比如同学之间,手指之间。都可以看作是间隔。

师:两端要种什么意思?

生:头和尾各要种一棵。

2、形成猜想(1分钟)

师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

生1:200

生2:201

生3:202

师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

生:验证。

3、化繁为简(4分钟)

师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵。大家看,种了多少米了?生:35米

师:才种了35米,一共要种多少米?

生:1000米。

师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

生:太累了,太麻烦了,太浪费时间了。

师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

生:想

师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

3、举例验证(5分钟)

师:比如:1000米的`路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。(课件出示:100米--

师:你认为取多少长的路,画图种树,比较好验证呢。

生:5米,10米,15米,20米,25米。

师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

4、反馈交流(如何操作还是一个问题)(5分钟)

请一个小组把自己的研究成果展示在黑板上。

师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。

师生互动

师:这空在这里是怎么回事?

生:间隔5米;

师:为什么是空了4个间隔?

生:20米里正好有4个5米;

师:怎么算出来的?

生:20除以5等于4

师:4个间隔数,空了4次

师:这样种(板书:两端种),可以吗?)

5、揭示规律(0.5分)

师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

6、解决问题(3分钟)

师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

师:(指着猜想答案)当时你是怎么猜想到200棵的。

师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

7、巩固练习(6分)

(1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远

(2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

三、再度猜想,打通联系(10)

1、过渡设疑

2、形成猜想

3、验证猜想

4、得出结论

5、打通联系

四、拓展选择,辨别类型(3分钟)

师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

(1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

(2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?

1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

(3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?

1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

五、丰富背景,遗留问题。(1.5分钟)

师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

植树问题教案 篇四

学习目标:

1.探讨封闭曲线中的植树问题。

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法。

3.在小组合作交流过程中,学会从不同角度思考问题。

学习过程:

一、自主探究

例3:张伯伯准备在圆形池塘周围

栽树。池塘的'周长是120m,

如果每隔10m栽一棵,一共

要栽多少棵树?

1.分析:这个问题和前面学的有什么不一样?

2.思考: 你想用什么方法来研究这个问题?

3.出示表格

4. 我可以把 ,我的发现是

可以独立完成,也可以小组合作完成。

二、课堂达标

1.填一填

(1)学校运动场的跑道一圈长400米,在内侧每隔10米插一面彩旗,一共可以插( )面彩旗。

(2)正六边形的花圃每边有3盆花,顶点都有花,共有( )盆花。

(3)同学们进行体操表演,48人围成正方形,4个顶点都有人,每边各有( )名同学。

2. 判一判。

(1)一个方阵,最外层每边8人,最外层一共88=64(人) ( )

(2)在五边形水池边摆花盆,每边放4盆,最少需要15盆。 ( )

(3)时钟3时敲3下用2秒,4时敲4下用4秒。 ( )

3.圆形滑冰场的一周全长是150m。如果沿着这一圈每隔15m安装一灯, 一共需要装几盏灯?

三、知识拓展

一条项链长60cm,每隔5cm有一颗水晶。这条项链上共有多少颗水晶?

植树问题教案 篇五

教学内容:教科书106页例1及相关内容。

教学目标:

1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

教学重点:

发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

教学难点:

运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:多媒体课件、直尺、学习纸。

教学过程:

一、 谜语引入做铺垫:

1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

师说谜语,学生回答(手)

师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

2.现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

板书课题:植树问题

二、探索新知

1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

2.理解题意:

师:在这道题中,你们发现了什么数学信息?

生回答(总长度100m,5m一棵)。课件演示。

师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

课件演示。

3.学生猜想:

师:你们猜一猜,一共要栽多少棵树?谁来说说。

生回答。怎样得到的。师板书:100÷5=20(棵)等等。

师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

4.学生操作:

师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

学生操作。师巡视。画好的`互相检查。

5.学生汇报:

师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

6.尝试列式:

师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

7.理解规律:

如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

(棵树比间隔数多1,反过来,间隔数比棵树少1)

8.巩固强化,得出结论:

师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

间隔数+1=棵树(棵树—1=间隔数)

大家把这个关系齐说一次。

要求棵数必须要知道?(间隔数)

已知总长度和间隔长度怎样求间隔数?

总长度÷间隔长度=间隔数齐读一次。

9.运用方法,验证例题:

师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

三、巩固练习:

1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

学生完成,板演,讲评。、

把一边改为两旁,生独立完成,集体讲评。

2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

生回答,师引导找到联系,在课件上标示。

学生独立完成,板演,集体讲评。

3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

学生独立完成,师提醒:先求间隔数。

四、课堂小结。

(略)

三人行,必有我师焉。以上5篇植树问题教案就是快回答小编为您分享的植树问题的范文模板,感谢您的查阅。