1. 主页 > 知识大全 >

《圆锥的体积》教案优秀3篇(圆锥的体积详细教案)

作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?这里快回答为大家分享了3篇《圆锥的体积》教案,希望在圆锥的体积教学设计的写作这方面对您有一定的启发与帮助。

《圆锥的体积》教案 篇一

圆柱的三分之一。

生2:三次倒满,圆锥的体积是圆柱的三分之一。

生3(迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。

生1:是三分之一,不是四分之一。

生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。

……

师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看,将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。

学生议论纷纷。

生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满。)学生调换教具,再试。

师:什么情况下,圆锥的体积是圆柱的三分之一?

生:等底等高。

生:圆锥的体积等于和它等底等高的圆柱体积的三分之一

案例反思】

《圆锥的体积》的教学多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,而以上教学,将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判。学生学的主动,经历了一番观察、发现、合作、创新的过程,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是从正确对待“错误”开始的。

《圆锥的体积》数学教案 篇二

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:

长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具

演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:

掌握圆锥的特征。

教学难点:

理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新

1.说出圆柱的体积计算公式。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、教学新课

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页〈WWW.JIAOXUELA.COM〉插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

4.学生练习。

5.教学圆锥高的测量方法。(见课本第13页有关内容)

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看

你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验

得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积

=底面积高

用字母表示:V=Sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

8.教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1.做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第4、5题。

《圆锥的体积》教学设计 篇三

教学目标:

1、掌握圆锥的体积公式,能运用公式进行计算。

2、在观察、实验、讨论等活动中探索圆锥的体积公式。

3、体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。

教学重点:

1、使学生探索出圆锥的体积公式。

2、初步掌握圆锥体积的计算方法并解决一些实际问题。

教学难点:探索圆锥体积的计算方法和推导过程。

教学过程:

一、情境导入

1、课件出示图片

引导学生指图说出冰淇淋形状像我们学过的什么几何体?圆锥

2、导入:同学们,冰淇淋形状像我们学过的圆锥体,你喜欢吃冰淇淋吗?那么冰淇淋体积有多大呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知:

(一)圆锥的体积公式探讨

师:大家猜想,探求圆锥的体积,会和我们学习过的那种形体有关系?(圆柱)为什么?底面都是圆形

师:我们的猜想是真的吗?圆柱和圆锥的体积之间有没有关系?有什么样的关系?让我们来做一个实验来验证一下吧!

出示圆柱和圆锥图片,演示等底等高

师:今天用来试验的教具有点特殊,他们的底相等,高也相等。

教师引导提出要求:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,用圆锥把圆柱装满需要几次,看它们之间有什么关系,并想一想通过实验你发现了什么?

学生分组实验

每小组推举一名学生汇报实验结果:

当圆柱和圆锥的底面积相等,高相等时,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。(教师多媒体演示)

所以我们的结论是:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。

3、教师出示两个大小悬殊的圆锥和圆柱,请同学猜测,圆锥的体积是否还是圆柱的三分之一?(进一步强调等底等高,教师演示)

4、师生共同总结结论:圆锥的体积等于和它等底等高的圆柱体积的1/3。

如果用用v表示圆锥的体积,s表示圆锥的底面积,h表示圆锥的高,圆锥的体积公式可以表示为:v= 1/3 sh

(二)简单应用 尝试解答

判断:

1、圆柱的体积是圆锥体积的3倍。( )

2、圆柱的体积大于与它等底等高的圆锥的体积。( )

3、圆锥的高是圆柱的高的3倍,它们的体积一定相等。( )

填空:

1、一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积是( )m³。

2、一个圆锥的体积是141.3cm³,与它等底等高的圆柱的体积是( )cm³。

例题:(出示课件)

工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。)

(生独立列式计算,小组交流,是指名组长出示答案)

巩固练习,运用拓展

一、求下图中圆锥体积。(略)

二、 一堆煤成圆锥形,底面半径是1.5m,高是1.1m。这堆煤的体积是多少?如果每立方米的煤约重1.4吨,这堆煤约有多少吨?(得数保留整数。)

三、提高拓展

有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。圆锥的体积是多少立方厘米?要削去钢材多少立方厘米?

总结:你学到了什么?

板书设计:

圆锥的体积

等底等高 v锥=1/3v柱=1/3sh

教学内容:

本节教材是人教版六年级数学下册第二单元“圆锥的体积”部分,课本第25-26页。这部分内容是在学生已经认识圆锥的特征和会圆柱体积计算的基础上学习的。学习过程中要引导学生探索并掌握圆锥的体积公式。然后能够根据公式及变形公式进行计算。

熟读唐诗三百首,不会做诗也会吟。快回答为大家整理的3篇《圆锥的体积》教案到这里就结束了,希望可以帮助您更好的写作圆锥的体积教学设计。