分数乘分数 篇一
[教学内容]
教科书第45-46页的例4、例5及相应的“试一试”,完成随后的“练一练”和练习九第1-5题。
[教材分析]
这部分内容先教学分数与分数相乘的计算方法,再通过比较,引导学生把分数与分数相乘的计算方法推及分数与整数相乘,帮助学生形成对分数乘法相对完整的认识。
例4先让学生借助直观图形,初步理解的、的的含义;再让学生联系示意图所显示的结果和分数乘法的意义,列出相应的乘法算式,算出两个分数相乘的积,建立分数与分数相乘的计算方法的初步猜想。例5让学生验证猜想,在操作探究中进一步理解分数乘分数的意义,启发学生以直观的方式探索分数乘分数的计算结果。然后组织学生观察例4、例5中几道题目的计算过程和结果,比较分析,归纳出分数和分数相乘的计算方法。其后,通过填空形式启发学生用分数与分数相乘的计算方法计算整数与分数相乘,把计算方法推及分数与整数相乘,促使学生从整体上把握分数乘法的计算方法,建立合理的认知结构。最后,教材举例介绍了计算分数乘法时更为简单的一种约分方法,简化计算过程。
[教学目标]
1、通过例题的直观操作,理解分数与分数相乘的意义,初步掌握分数乘分数的计算方法。
2、在探究活动中,让学生运用已有知识和经验,主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。
3、使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。
[教学过程]
一、口算,说说分数和整数相乘的方法。
4× 7× ×4 ×12
(设计意图:抓住学生的认知起点,为学生进一步学习分数乘法的意义和计算方法作好铺垫。)
二、教学新知
(一)、建立猜想。
1、出示例4的长方形纸,学生观察。
2、依次呈现长方形图,逐步提问。
(1)出示长方形纸的涂色部分。问:涂色部分是这张长方形纸的几分之几?
(2)出示斜线。问:画斜线的部分各占的几分之几?
追问:的、的又各是这个长方形纸的几分之几?
让学生明确:的是, 的是。(板书)
3、思考:求的是多少,可以列怎样的算式?求的呢
口答
4、小结:求一个分数的几分之几是多少也可以用乘法计算。
5、完成填空:
○= ○=
6、比一比:
这两个算式与以前的分数乘法有什么不同?(揭示课题)今天我们学习的是分数乘分数。
7、猜想:观察这2个式子,猜猜分数与分数相乘是怎么计算的?
让学生在观察的基础上初步说出自己的猜想。
(设计意图:理解分数与分数相乘的意义,是一个难点,因此在教学中,结合直观图,逐步的引导学生深入理解,在不断的追问、交流中形成完善的分数乘法的意义,获得独特体验,同时建立了初步的计算方法的猜想。)
(二)验证猜想。
谈话:这个猜想很有价值,对不对呢?我们还要举一些例子来验证。
1、出示例5的填空题和长方形图。
×= ×=
2、结合题意提问。
(1)说一说×和×分别表示的几分之几?
(2)你能根据刚才的猜想写出这两个算式的结果吗? 学生完成填空。
3、操作验证:
(1)提出要求:请大家先在两个长方形图中分别画斜线表示的和的,然后观察一下结果和你猜想的得数一样吗?
(2)学生操作活动,一生板演,师巡视
(3)组织交流,证实猜想是正确的。
(三)比较归纳。
1、引导学生仔细观察例4、例5四道算式:
提问:在这些算式中,你发现积的分子、分母与两个因数的分子、分母各有什么关系?
2、在学生独立思考基础上,再在小组里交流。
3、在交流中归纳总结方法;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作的分母。
(设计意图:计算方法的得出是学生经历了猜想、验证、观察比较、概括归纳等一系列的数学思维活动后得出的,教师在活动中适时引导,学生则主动建构,在这个过程中学生的自主学习能力得到了发展,也体验到了数学学习的乐趣。)
(四)试一试
1、学生尝试解答,指名板演,核对时说一说怎样想的?
2、明确:计算过程中,能约分的,要先约分再算出结果。
三、方法推广。
1、出示:请用分数和分数相乘的方法计算下面各题
×3=×= 4×=×=
2、 提示:整数都可以看成分母是1的分数。
3、 学生尝试解答完成填空。指名板演。
4、 追问:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?
2
1
5、说明:分数乘法也可以像下面的这样计算,教师示范:
3
2
×= 4×=
6、小结:今后计算分数乘法时,照上面的样子去做,而不必把整数改写成分母是1的分数,这样比较简便。
(设计意图:在前面探究的基础上,提供空间和时间让学生自主探究,培养了学生运用已有知识和经验解决问题的能力,教师再加以介绍点拨,促使学生从整体上把握分数乘法的计算方法。)
四、巩固练习。
1、完成“练一练”
学生独立完成,四名学生板演。
交流时选择部分题目,让学生说一说计算过程。注意书写格式。
2、完成练习九第1题
先让学生独立完成后,再组织交流。使学生明白,要求小时耕地公顷,就是求 公顷的是多少。
3、完成练习九第3题
学生独立判断,分析错误原因,并进行订正。
4、完成练习九第4题
学生先直接在书上写出得数,再引导学生比较每组的两道题,说说计算的过程有什么相同和不同的地方。
(设计意图:由学生自己探索得到的知识,最希望得到应用。利用好教材提供的“练一练”、“改错”“比一比”等多种形式的练习,让学生在练习中进一步巩固新知,并学会反思,养成检验的好习惯。)
五、总结
本节课学习了分数乘分数,你有什么收获?我们是怎么得到这个计算方法的?
(设计意图:必要的学习小结可以帮助学生养成自我反思的习惯,提高他们自我梳理知识的能力,提升学习方法。)
六、课堂作业
练习九第2题、第5题
六年级 <<分数乘分数>> 来自第一范文网。
分数乘整数教学设计 篇二
分数乘整数教学设计
【教学内容】
人教版六年级数学上册第一单元《分数乘整数》。
【学习目标】
1.理解分数乘整数的意义。
2.掌握分数乘整数的计算方法,并能正确地进行计算。
3.感受知识之间的内在联系,提高自主探究与合作交流的学习能力,建立学好数学的信心。
【学情分析】
方式:
个别访谈(从50人中随机抽取10名学生)。
内容:
1.你知道整数乘法的意义吗?
2.同分母分数相加怎样计算?
3.分数乘整数谁会算?例如:5/24X8=
分析访谈结果:
学生对第1小题答对的有10人。第2小题答对的有8人,答错的有2人。第3小题答对的有1人,答错的有9人。通过访谈结果我发现对以前学过的整数乘法的意义只有少数学生表述不准确,因此在上课前我要布置学生回去复习整数乘法意义的有关知识,为本节课做铺垫。此外学生对同分母分数相加并不陌生,他们大多都能够正确说出计算方法,但问到分数乘整数谁会算时学生的解释难度很大,大多学生表述不准确。因此在教学时如何将学生已有的知识与计算方法进行迁移,成为本课教学的关键。
【重点难点】
理解分数乘整数的意义。
掌握分数乘整数的计算方法,并能正确地进行计算。
【教学具准备】
课件、练习本等。
【教学过程】
一、板书课题。
同学们,今天我们来学习“分数乘整数”(板书课题)。
二、出示目标。
这节课的目标是:
1、理解分数乘整数的`意义。
2、掌握分数乘整数的计算方法,并能正确地进行计算。
师:为了达到目标,下面请大家认真地看书。
三、自学指导。
呈现学习指导:认真看课本第2页到第3页的例1和例2。
1.看例1的情景图和计算过程,思考:分数乘整数的意义是什么?
2.分数乘整数是怎样计算的?计算时,怎样做比较简便?
(5分钟后,比谁能做对与例题类似的题!)
四、先学。
1.自学(看一看)
学生认真看书,教师巡视,督促人人都在认真地看书。
2.自做检测题(做一做):(课本第2页“做一做”的第1和2题,)找两名学生板演,其余学生做在练习本上做,教师认真巡视(不宜辅导学生),发现错例,板书于黑板上对应位置。
五、后教。
(一)更正。
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由不同层次的学生依次更正黑板上的题)
提示:更正时用黄色粉笔,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。
(二)讨论(议一议):
评议第一题。
1.看题,认为对的举手。为什么?
生说,师板书:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.看计算过程和结果,认为对的举手。
评议第二题(第2小题)
1.认为对的请举手,为什么?分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。强调:能约分的要提前约分。约分时,约得的数要跟原数上、下对齐。
2.评正确率、板书,并让学生同桌对改,有错的更正。
六、当堂训练。
1.课本第3页的做一做。
2.练习一第1题。
3.(作业)练习一2、3题。
七、全课总结。
同学们,今天我们学习了分数乘整数,它意义是什么呢?该怎样计算呢?计算时需要注意什么?你是怎样学会的?
下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体又端正。
分数乘分数 篇三
听课随感:
以上是徐老师在进行《分数乘分数》这个教学内容中展开算理探索的主要步骤的教学片段。他的教学思路独特,简洁。出示几个简单的分数,让学生自由组合成乘法算式并尝试计算,在有了多种方法算出答案后进行横向比较,得出“分子相乘的积做分子,分母相乘的积作分母”与“化成小数进行计算”最后的得数是相同的,由此说明“分子相乘的积做分子,分母相乘的积作分母”这种方法是可以计算。然后又通过纵向比较得出,“分子相乘的积做分子,分母相乘的积作分母”的方法计算分数乘法不仅适合全部这种类型的计算,而且比较简便。紧接着徐老师就放手让学生通过画图来验证这种方法为什么可行,给予学生明确的探究目的,提供充足的探究时间与空间。与前一节课有着截然不同的探索步骤。
探索步骤的不同,是因为今天有了前一节课做铺垫。课一开始徐老师就展示了整数与分数的乘法,然后就很自然地引出分数乘分数的一道题,让新知识与旧知识相联系,在学生原有的知识和经验上,发展新知识,促进知识的有效迁移,促使学生形成优化的认知结构。分数乘法的计算方法就水到渠成,但为什么可以这样来计算,恰恰是学生所不理解的,所以这才是本节课的重点与难点。如何突破难点,徐老师采用了最简单而有效的方法——“画图验证”,从中也让学生有探究的需求,让我们刚刚得到的抽象知识用直观的图画,形象地展示、说明。这是一个学生主动探索、解释新知的过程,是思维的火花不断碰撞的过程。在这个过程中,教师不断引导着学生进行反复的验证,说明,解释,然后归纳,概括,最终反映出“分子相乘的积做分子,分母相乘的积作分母”算法的真正含义,不光突破了难点,同时培养了学生的探索兴趣和探究精神。最可贵的是,在懂得这个算理后,徐老师引着学生又回到起点,看看整数成分数的乘法,原来它也适用这种方法,使学生更加了解“分子相乘的积做分子,分母相乘的积作分母”是反映计算分数乘法普遍规律的一般计算法则。
虽然学生要学的知识是前人发现的,书上写的明明白白,但对于学生来说,仍是全新的,未知的,需要每个人再现类似的创造过程来形成,因为学生对数学知识的学习并不是简单的接受,而必须以再创造的方式进行;作为数学教师也不能简单地将知识直接灌输给学生,而是要让学生经历这个再创造的过程。由此可见,在新知生长点的教学环节中,留下适当“时空”,让学生进行创造活动,很必要。
《分数乘整数》教学设计 篇四
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点
引导学生总结分数乘整数的计算法则。
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1、读题,说说块是什么意思?
2、根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:
方法2:
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书:
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
用分子2乘3的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算。
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1、改写算式
2、只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1、计算(说一说怎样算)
思考:为什么先约分再相乘比较简便?
2、应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1、一条路,每天修千米,4天修多少千米?
2、一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
他山之石,可以攻玉。以上就是快回答给大家分享的4篇《分数乘分数》教学反思,希望能够让您对于分数乘分数的写作更加的得心应手。