1. 主页 > 知识大全 >

高中数学必修一教案(优秀6篇)(高中政治必修一教案)

在教学工作者实际的教学活动中,总归要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?下面快回答为大家整理了6篇高中数学必修一教案,希望可以帮助您更好的写作高中数学必修一教案。

高中数学教案必修一 篇一

(一) 知识与技能目标

理解任意角的概念(包括正角、负角、零角) 与区间角的概念。

(二) 过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三) 情感与态度目标

1. 提高学生的推理能力;

2.培养学生应用意识. 教学重点

任意角概念的理解;区间角的集合的书写. 教学难点

终边相同角的集合的表示;区间角的集合的书写.

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类: a

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

答:分别为1、2、3、4、1、2象限角.

3.探究:教材p3面

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合s={ β | β = α +

k·360° ,

k∈z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈z}.

例5.写出终边在y?x上的角的集合s,并把s中适合不等式-360°≤β<720°的元素β写出来.

4.课堂小结

①角的定义;

②角的分类:

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

③象限角;

④终边相同的角的表示法.

5.课后作业:

①阅读教材p2-p5;

②教材p5练习第1-5题;

③教材p.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

解:??角属于第三象限,

? k·360°+180°<α<k·360°+270°(k∈z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈z) .

<n·360°+135°(n∈z) ,

当k为偶数时,令k=2n(n∈z),则n·360°+90°<此时,

属于第二象限角

<n·360°+315°(n∈z) ,

当k为奇数时,令k=2n+1 (n∈z),则n·360°+270°<此时,

属于第四象限角

因此

属于第二或第四象限角.

(一)

教学目标

(二) 知识与技能目标

理解弧度的意义;了解角的集合与实数集r之间的可建立起一一对应的关系;熟记特殊角的弧度数.

(三) 过程与能力目标

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

(四) 情感与态度目标

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点

“角度制”与“弧度制”的区别与联系.

教学过程

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

1.引 入:

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便。在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

2.定 义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

(2)引导学生完成p6的探究并归纳: 弧度制的性质:

①半圆所对的圆心角为

②整圆所对的圆心角为

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= 。

4.角度与弧度之间的转换:

①将角度化为弧度:

②将弧度化为角度:

5.常规写法:

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

例3.计算:

(1)sin4

(2)tan1.5.

8.课后作业:

①阅读教材p6 –p8;

②教材p9练习第1、2、3、6题;

③教材p10面7、8题及b2、3题.

高中数学教案必修一 篇二

1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

学生全面认识数学的科学价值、应用价值和文化价值。

2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

如何建立实际问题的目标函数是教学的重点与难点。

一、问题情境

问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?

二、新课引入

导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

1。几何方面的应用(面积和体积等的最值)。

2。物理方面的应用(功和功率等最值)。

3。经济学方面的应用(利润方面最值)。

三、知识建构

例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

说明1解应用题一般有四个要点步骤:设——列——解——答。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

值及端点值比较即可。

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

能使所用的材料最省?

变式当圆柱形金属饮料罐的表面积为定值s时,它的高与底面半径应怎样选取,才能使所用材料最省?

说明1这种在定义域内仅有一个极值的函数称单峰函数。

说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

s1列:列出函数关系式。

s2求:求函数的导数。

s3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

多大时,才能使电功率最大?最大电功率是多少?

说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

例4强度分别为a,b的两个光源a,b,它们间的距离为d,试问:在连接这两个光源的线段ab上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

(1)设,生产多少单位产品时,边际成本最低?

(2)设,产品的单价,怎样的定价可使利润最大?

四、课堂练习

1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

2。在半径为r的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面abcd的面积为定值s时,使得湿周l=ab+bc+cd最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

五、回顾反思

(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

(3)相当多有关最值的实际问题用导数方法解决较简单。

六、课外作业

课本第38页第1,2,3,4题。

高中数学必修一教案 篇三

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一。教学过程:

1. 使学生熟练掌握函数的概念和映射的定义;

2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。

二。教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

(),yfxxA

其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素 定义域、对应关系和值域。

3.映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

4. 区间及写法:

设a、b是两个实数,且a

(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

高中数学必修一教案 篇四

一。复习引入

提问:

以A(a,b)为圆心,半径为r的圆的标准方程是什么?

讨论并归纳回答。

复习巩固加强记忆。

二。新课讲授

1.思考:

我们先来判断两个具体的方程是否表示圆?

2.教师提问:

(1).是不是任何一个形如 的方程表示的曲线都是圆?

(2).如果不是那么在什么条件下表示圆?(提示:与圆的标准方程进行比较。)

综上所述,方程

表示的曲线不一定是圆,只有当 时,它表示的曲线才是圆, 我们把方程 ( )称为圆的一般方程

与一般的二元二次方程 比较

我们来看圆的一般方程的特点:(启发学生归纳)

学生根据已有的知识,经过配方,把方程化成标准形式,然后加以判断。

1.

2.

(让学生相互讨论后,由学生总结)

配方得总结

当 时,此方程表示以(- ,- )为圆 心, 为半径的圆;

当 时,此方程只有实数解 , ,即只表示一个点(- ,- );

当 时,此方程没有实数解,因而它不表示任何图形

①x2和y2的系数相同,不等于0.

②没有xy这样的二次项

使新知识建立在学生已有的知识上

设置问题:提出疑问,诱导学生主动思考,主动探究,合作交流使学生在积极的学习中解决问题,提高学生的教学思维能力,实现素质教育的目标,同时也培养了学生的情感、态度与价值观。

提高学生分析问题和解决问题的能力。

圆的标准方程

圆的一般方程

方程

圆心

半径

r

优点

几何特征明显

突出方程形式上的特点

问题:圆的标准方程与圆的一般方程各有什么特点?

采用类比法加深在研究问题中由简单到复杂,由特殊到一般的化归思想的认识。

练习1.判断下列方程是否表示圆? 如果是 ,请求出圆的圆心及半径。

三。例题讲解:

例1:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

分析:已知曲线类型,应采用待定系数法

使用待定系数法的圆的方程的一般步骤:

1.根据题意,选择标准方程或一般方程;

2.根据条件列出关于a、b、r或D、E、F的方程组;

3.解出a、b、r或D、E、F,代入标准方程或一般方程。

例2.已知线段 的端点 的坐标是 ,端点 在圆 上运动,求线段 中点 的坐标 中 满足的关系?并说明该关系表示什么曲线?

练习2.求圆心在直线 上,并且经过原点和点(3,-1)的圆的方程

课堂小结

(1)任何一个圆的方程都可以写成 的形式,但是方程 的曲线不一定是圆;当 时,方程 称为圆的一般方程。

(2)圆的一般方程与圆的标准方程可以互相转化;熟练应用配方法求出圆心坐标和半径。

(3)用待定系数法求圆的方程时需要灵活选用方程形式。

想一想:可否先求圆心和半径,再得出圆的方程?

(提示学生结合图形,圆的弦的中垂线的交点为圆心 ,圆心到圆上一点的距离为半径)

加强待定系数法的应用

培养学生数形结合思想,进一步加强学生用代数方法研究几何问题的能力,体现了本节的知识与技能目标。

练习:P123:1、2、3

生:练习

4.1.2 圆的一般方程

课时设计 课堂实录

4.1.2 圆的一般方程

1第一学时 教学活动 活动1【活动】活动

四。教学过程

教学环节

教师活动

学生活动

设计意图

复习圆的定义及圆的标准方程特征

创设问题

设疑

类比

教师引导

高中数学教案必修一 篇五

掌握圆的标准方程,并能解决与之有关的问题

圆的标准方程及有关运用

标准方程的灵活运用

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。

例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)

四、小结练习p771,2,3,4

五、作业p811,2,3,4

高中数学教案必修一 篇六

1、知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2、过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3、情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

重点、难点:用斜二测画法画空间几何值的直观图。

1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2、教学用具:三角板、圆规

(一)创设情景,揭示课题

1、我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2、例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3、探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4、平行投影与中心投影

投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5、巩固练习,课本p16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1、书画作业,课本p17练习第5题

2、课外思考课本p16,探究(1)(2)

熟读唐诗三百首,不会做诗也会吟。上面就是快回答给大家整理的6篇高中数学必修一教案,希望可以加深您对于写作高中数学必修一教案的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。