作为一名老师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么应当如何写教案呢?下面是快回答给大家整理的7篇《图形的对称》教案,希望可以启发您对于对称图形的写作思路。
《图形的对称》教案 篇一
教材、学生分析
对称是大自然的结构模式之一,它广泛存在于我们的日常生活中,存在于人类创建的文明史中,具有多种变换形式。学生对于对称现象并不很陌生,例如,许多艺术作品、建筑设计中都体现了对称的风格。教材借助于生活中的实例和学生的操作,判断哪些物体是对称的,找出对称轴,并初步地、感性地了解轴对称图形的性质,但并不要求掌握“轴对称图形”的名称。
教学目标
1.了解生活中的对称现象,认识轴对称图形的一些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。
2.通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新等能力。
3.在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的`对称美。
设计理念
1.改变学生的学习方式,以自主探索、合作交流、动手实践为主要学习方式,促进学生的自主学习。
2.充分尊重学生的生活经验和认知基础,引导学生联系实际,感悟“生活数学”理念。
3.将数学欣赏融入教学中,感受数学美。
教学重点
认识轴对称图形的基本特征。
教学难点
设计制作轴对称图形。
设计流程
一、理解感知“对称”
1.首次探底:今天这节课我们要来研究图形王国中的一种现象——“对称”。你听说过对称吗?说说你印象中的对称。
2.再次探底:出示组图(蝴蝶、狮子脸、椰树、枫叶),这些图形你觉得哪些是对称的?跟同桌说说为什么。
3.交流反馈:你是怎样想的,说说你的理由?(预设①:多数学生能判断正确——你们是怎么看出来的?;预设②:少数学生能判断正确——展开生生交流,可分成正反两方争辩,陈述理由)
4.引出验证:你能想个办法来证明蝴蝶、狮子脸、枫叶的两边一样,只有椰树的两边不一样吗?(预设:学生代表上台分别折一折蝴蝶、狮子脸、椰树、枫叶)
5.师小结:像这样对折后两边完全重合在一起的图形,就叫做对称图形。(板书)刚才同学们把图形对折后留下的这条折痕,我们把它叫做这个对称图形的对称轴。(在黑板上用点划线范画对称轴)你能找出剩下图形的对称轴吗?你觉得对称轴有什么特点?
6.即时生成资源并共享:在教室里找找有没有对称图形,指指它们的对称轴。全班互动交流评价。
7.欣赏生活中的这些物体的形状,指指它们的对称轴在哪里。
(意图:教学伊始,开门见山地结合课题进行探底,把握学生认知起点,以四幅色彩鲜艳的图片为纽带,唤醒学生的生活经验,再以“动手折一折”为依托,引出对称图形及对称轴的概念,并及时拓展到生活中去寻觅与欣赏,以学生现场找到的对称图形为资源,利用这些生成资源进行对称概念和对称轴概念的巩固。在这样的数学教学中,学生真切地感受到了数学资源和数学实践无处不在。细想之下,整个教学过程不就是一个从“生活经验”提升到“数学原型”的过程吗?而这样的过程又是在师生民主平等的对话和学生多样化活动中进行的。)
二、实践深化“对称”
1.讨论:刚才我们找出了很多对称图形,也欣赏了很多对称图形,老师也想来动手制作一个对称图形,你觉得我可以制作一个什么图形?……
2.探究方法:师从学生回答中采纳一条意见,“大家能指挥老师做一做吗?”……(预设①:多数同学会——集体指挥教师后请学生小结方法;预设②:个别同学会——请同学上来演示,师生共同小结方法。)
3.你想自己动手试一试吗?学生个体独立活动,看在相同的时间内,谁制作的对称图形最有创意、最漂亮。
4.展示生成资源:把你的作品先露一半让大家想想可能是什么图形?再全部展开贴在黑板上,指指它们的对称轴(生生互动交流、评价)。
(意图:在这一教学环节中,主要借助给老师出主意、动手做一做、互动评评议议的教学策略,让学生带着知识走进实践,不着痕迹地得出了制作对称图形的方法,主张通过实践使学生学会运用知识,发展思维。这里将教学的重点圈定于学生自主探求制作方法、创造对称图形之中,并对这些生成资源加以利用,感悟数学的应用性和数学美。)
三、练习内化“对称”。
1.出示常见图案。判断,如果是对称图形的,画出对称轴。(独立完成,反馈)
2.出示长方形、正方形、圆形,折出对称轴(动手之前先进行猜想:你觉得他们可能有几条对称轴?动手实践验证)。
四、总结延伸:
1.通过今天的学习,你学会了什么?你觉得学了对称图形后有什么用处呢?其实,对称还有很多种类型,以后我们将继续去学习。
2.数学百花园:欣赏中国的剪纸艺术和世界各地的建筑艺术,进一步感受对称美。
对称图形 篇二
一、学习目标:
1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念。
2、探索并了解角的平分线、线段垂直平分线的有关性质。
二、学习重点:
1、角、线段是轴对称图形。
2、角的平分线、线段垂直平分线的有关性质。
三、学习难点:角的平分线、线段垂直平分线的有关性质。
(一)预习准备
(1)预习书123~126页
思考:角平分线有什么特征?线段垂直平分线有什么特征?
(2)预习作业:
1、下列图形中,不是轴对称图形的是。
A、角B、等边三角形C、线段D、平行四边形
2、下列图形中,是轴对称图形的有个。
①直角三角形,②线段,③等边三角形,④正方形,⑤等腰三角形,⑥圆,⑦直角。
A、4个B、3个C、5个D、6个
3、下列说法正确的是。
A、轴对称图形是两个图形组成的。B、等边三角形有三条对称轴。
C、两个全等的三角形组成一个轴→www.kuaihuida.com←对称图形。D、直角三角形一定是轴对称图形。
4、如图,CD⊥OA,CE⊥OB,D、E为垂足。
(1)若∠1=∠2,则有___________;
(2)若CD=CE,则有___________。
(二)学习过程:
1、角是轴对称图形,它的对称轴是_______,角的平分线上的点到这个角的两边的距离_______。
2、线段是轴对称图形,它的一条对称轴是_______,另一条对称轴是线段所在的直线。
3、线段垂直平分线上的点到这条线段_______。
回顾小结:
(1)角是图形。
(2)角平分线上的点到这个角的两边的相等。
(3)线段是轴对称图形。
(4)垂直并且线段的直线叫做这条线段的垂直平分线。简称中垂线。
线段垂直平分线上的点到这条线段的距离相等。
对称图形 篇三
义务教育课程标准实验教科书第三册
执教者:蔡蔡
教学内容
教科书68页例2,做一做,练习十五第2题
教学目标
知识目标:初步认识的基本特征,并能画出对称轴。
能力目标:培养学生的动手操作能力,让他们在操作中探索发现。
情感、态度、价值观目标:培养学生认识、发现、探索美的能力,提高审美意识。
教学重难点
能够辨认,并能画出对称轴。
教学准备
学生:剪刀、直尺、折纸
教师:各种对称的图案、课件
教学过程
一、 情景引入
同学们,你们喜欢看图片吗?(喜欢)
今天老师带来一些非常漂亮的图案让你们欣赏。请同学们认真观察,你看到了什么?
你觉得漂亮吗?
二、认识
1、认识的特征
这些图案有什么相同的地方?
小朋友都讲得很好,形状、颜色……都一样。
当学生说出“两边一样”时,再出现课件演示(演示图形完全重合——开启——完全重合)
引出课题:你看到了什么?(多了一条直线在中间)(直线两边是一样的)象这样的图形就叫做。
板书课题: 特征:两边一样
老师这里有些图形,不知道是不是,你可以帮帮我的忙吗?
出示所剪教具让学生判断,问为什么是,为什么不是。
2、书68页做一做——找出。
请同学们打开书68页判断一下哪些是吗?是的在下面打个勾。
对答案时小组内互相评价交流,多人错的拿出来讲。
3、动手剪一剪
二(2)班的小朋友真聪明,刚学会的知识马上就能运用了。
这么美的图案你们想自己剪出来吗?(边说边板贴自己剪的)
指着心形问“你知道心形是怎样剪出来的?”(把会剪的同学请上来边说边示范剪)根据学生的回答板书:折——画——剪——展(如有学生说不出画,老师可以提醒:先画出图可以使剪出来的图案更美丽)
请你用刚才 说的方法剪出一个你喜欢的,看行不行。
四人小组互相说一说,并评出最美的图形贴到黑板上。
三、认识对称轴
1、我们在剪的时候,开始都要将这张纸对折,你们发现了吗?对折后有一条折痕,你能不能给这条折痕取一个名字?……
你们取的名字都很好,书上也给这条线取了一个名字,请翻开书68页,看看书上取的名字叫什么?
板书:对称轴(对折的折痕其实就是对称轴,因此剪出的图形就是。)
2、画对称轴
(1) 请你观察书上的对称轴画在图形的什么位置,是用什么线表示的?
(2) 画对称轴其实就是画在图形的折痕上。折痕就是对称轴。(师边说边在黑板上示范画对称轴)
(3) 你们能在自己剪的图案上画出对称轴吗?画完后请四人小组互相检查。
学生在自己所剪的图形或学具上画对称轴,互相检查,评价。
小朋友太棒了,对称轴在图案的中间(也可以说是画在折痕上),用虚线表示,(边说边指黑板上的对称轴)老师一教就会。
拿出长方形问:这是吗?试一试,你能找出长方形的对称轴吗?
让学生上来说,边说边折。(重点是看两边是否一样)还有其他对称轴吗?
也就是说,图形里的对称轴可以是一条,也可以是两条。
(4) 正方形也是,它有几条对称轴?试一试,找出一条画一条
一会儿老师让画对的小朋友上来当老师说。
让学生边说边折。
跟他一样的同学请举手,不一样的同学你现在明白没有?
(5) 老师这里还有一个圆形,你能找出它的对称轴吗?象刚才一样,也是
找出一条画一条。看看哪位小朋友找得最多。
(课件演示)
也就是说,不一定只有一条对称轴,还可以有两条、三条……
甚至是很多条对称轴。
二、 拓展延伸,巩固深化
知识的应用——今天我们学了的一些知识。其实在生活中也有很多,你有什么发现?
2、欣赏对称的美
师:小朋友们观察得真仔细。想看看到底应用在生活中的哪些地方吗?点击课件
3、这节课你学得开心吗?你开心,老师就开心。哪个地方你学得最开心?
开心之余你学到了什么知识?(如果学生说最喜欢剪纸,就问她:你是怎样剪的?剪纸可以装饰房间、教室等,把周围的环境布置得更漂亮,使我们的生活多姿多彩。)
4、画出另一半
不过老师觉得你们学会这些知识后还要会用这些知识解决生活中得问题
才是最厉害的。
看,这里有一幅图,是小糊涂只画了一半的画,你能帮他画完整吗?请你说说你打算怎样做?
说完再画画。
展示几幅画得好的。
老师小结
板书:
特征:两边一样
怎样剪:折——画——剪——展
对称轴:
对称图形 篇四
教学目标:
1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线、线段垂直平分线的有关性质。
教学重点:
1、角、线段是轴对称图形
2、角的平分线、线段垂直平分线的有关性质
教学难点:角的平分线、线段垂直平分线的有关性质
准备活动:准备一个三角形、一张画好一条线段的纸张
教学过程:
先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案。
一、探索活动
教师示范:(按以下步骤折纸)
1、在准备好的三角形的每个顶点上标好字母;a、b、c.把角a对折,使得这个角的两边重合。
2、在折痕(即平分线)上任意找一点c,
3、过点c折oa边的垂线,得到新的折痕cd,其中,点d是折痕与oa的交点,即垂足。
4、将纸打开,新的折痕与ob边交点为e.
教师要引导学生思考:我们现在观察到的只是角的一部分。注意角的概念。
学生通过思考应该大部分都能明白角是轴对称图形这个结论。
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。是否也有同样的发现?
学生应该很快就找到相等的线段。
下面用我们学过的知识证明发现:
如图,已知ao平分∠bac,oe⊥ab,od⊥ac.求证:oe=od.
巩固练习:在rt△abc中,bd是角平分线,de⊥ab,垂足为e,de与dc相等吗?为什么?
(1)如图,oc是∠aob的平分线,点p在oc上,po⊥oa,pe⊥ob,垂足分别是d、e,pd=4cm,则pe=__________cm.
(2)如图,在△abc中,,∠c=90°,ad平分∠bac交bc于d,点d到ab的距离为5cm,则cd=_____cm.
内容二:线段是轴对称图形吗?
做一做:按下面步骤做:
1、用准备的线段ab,对折ab,使得点a、b重合,折痕与ab的交点为o.
2、在折痕上任取一点c,沿ca将纸折叠;
3、把纸展开,得到折痕ca和cb.
观察自己手中的图形,回答下列问题:
(1)co与ab有什么样的位置关系?
(2)ao与ob相等吗?ca与cb呢?能说明你的理由吗?
在折痕上另取一点,再试一试,你又有什么发现?
学生会得到下面的结论:
(1)线段是轴对称图形。
(2)它的对称轴垂直于这条线段并且平分它。
(3)对称轴上的点到这条线段的距离相等。
应用:
(1)如图,ab是△abc的一条边,,de是ab的垂直平分线,垂足为e,并交bc于点d,已知ab=8cm,bd=6cm,那么ea=________,da=____.
(2)如图,在△abc中,ab=ac=16cm,ab的垂直平分线交ac于d,如果bc=10cm,那么△bcd的周长是_______cm.
小结:
(1)角是轴对称图形。
(2)角平分线上的点到这个角的两边的距离相等。
(3)线段是轴对称图形。
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线。简称中垂线。
(5)线段垂直平分线上的点到这条线段的两个端点距离相等。
作业:课本p193习题7.2:1、2、3.
教学后记:
学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解。的部分原因是学生忘记了点但直线的距离是什么一回事。而对于中垂线的理解较好。基本上能找到当中相等的线段,并且用学过的知识予以证明。内容较多,容量较大。课后还要加强理解和练习。
对称图形 篇五
本课教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。
纵观这节课的教学过程,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
一、创设情境,激发兴趣
追求美、崇尚美是人之天性。整堂课以欣赏美为线索展开教学,本课就创设了这样一个情景动画:“碧草青青花盛开,彩蝶双双久徘徊”,在优美的小提琴协奏曲的渲染中,两只小企鹅到北京旅游,介绍沿途参观的很多著名景物(这些景物都是对称的),带领学生一起畅游了一番,学生在愉悦的气氛中开始观察优美的画面,仿佛身临其境,领略了对称物体之美,从学生熟知的生活情境出发,让学生初步感知对称的事物。这种赢造宽松愉悦、开放式的环境,学生纷纷自觉投入到学习活动中,观察这些实物的特点——它们的两边都是一模一样的,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串连教材的效果,让学生在这种欣赏美的教学情景中快乐的学习,激发学生学习数学的兴趣,开拓学生的思维,发展学生的联想、想象能力,引导学生感受美、鉴赏美、领悟美,达到情境(景)交融的教学效果。
二、实践操作、激活思维
本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折,剪一剪,画一画,等一系列活动,让学生多种感官参与教学活动。在新授教学时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就引入“完全重合”,让学生反复地操作体会,再配合课件的动画演示,初步感知什么是“完全重合”;最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,始终以学生动手操作实践为主导,在巩固练习中也安排了一些学生操作的活动,让学生在操作过程中体会“完全重合”和“不完全重合”的区别,为辨别是否轴对称图形奠定了基础。在最后的制作轴对称图形时完全放手让学生去操作,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
三、小组合作、发挥特效
每个学生在活动中的经验与收获不尽相同,为了使学生个体的、群体的活动促进学生的整体的发展,教学中常发挥合作交流的功能,采用集体讨论和交流的形式,将个人的经验或成果展示出来,弥补一个教师难以面向众多有差异的学生的不足。在本课中,有很多活动都是采用小组合作的形式,由于低年级学生作图能力不强,对于正确美观地制作出一个轴对称图形还有一定的难度,但由于学生学习发展的进程不同,针对一部分学生已会制作的实际情况,我组织学生展开分小组合作讨论活动:怎样剪一个轴对称图形,然后评一评小组成员中制作的轴对称图形,在动手操作时也把自己的想法在小组里交流。在引出轴对称图形时,也是通过小组合作,在操作、交流中感知,这样尽可能地将每个人的收获变成学生集体的共同精神财富。
四、课外延伸、丰富情感
本堂课的结尾让学生欣赏古今中外著名的对称建筑,配上古典的轻音乐,拉近了生活与数学的距离。古建筑又是一种艺术,渗透在数学学科中,既是学习数学的好材料,又是渗透民族文化的好题材,选择切合教学符合儿童学习规律的素材,需要一些有民族特色的题材,如本课例中的背景音乐、古建筑、中国剪纸等就是在这方面作出的有益尝试和探索。
本节课的不足之处:导入虽很贴近学生生活,体现欣赏美,也很自然,但总觉有些平淡。在判断学过的几何平面图形是否轴对称图形,这是本节课的一个重点,在汇报时处理得过急没有注意到个别差异。
对称图形 篇六
教学目标:
1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。
2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。
教学重点:
认识轴对称图形的基本特征,能画出轴对称图形的对称轴。
教学难点:
能直观判断出轴对称图形,能用折纸的方法找出对称轴;
教学准备:
课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。
教学过程:
一、巧设情境,激发好奇心。
花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:“我们是一家人。”小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。
二、欣赏图片,建立表象。
1、这不,你瞧。蝴蝶找来了什么?
课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。
2、引导观察图形,交流汇报
刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。
师:你发现了什么数学问题?
生1:我发现他们都很美。
生2:左右一样。上下?
生3:我发现它们是对称的。
师:你是怎么理解对称的?
生3:对称就是左右两边是完全一样的。
3、教学板书“对称”
(1)课题导入
师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。
(2)结合剪纸作品,抽象概念
师:谁能在最快的时间内剪出一个葫芦吗?
学生自己操作创作。(先把纸对折后再剪)
教师选几张学生剪得好的轴对称图形贴在黑板上。
找出不同的剪法,让学生说一说是怎样剪的。
师:请大家观察,比较这些图形,你发现了什么?
生1:他们的形状不同。
生2:他们的大小也不同。
生3:他们的两边是完全一样的。
生4:这些图形上都有一条折痕。
现在你们把你自己剪的图形重新对折一下,你们会发现他们怎么样?(两边完全重合)是的,那么什么样的图形才是轴对称图形呢?
学生回答自己理解的轴对称图形。(对折后两边的部分完全重合的图形就是轴对称图形)
那么这条折痕应该给它取个什么样的名字呢?(对称轴)
老师把课前准备好的作品展示给大家看。(灯笼、衣服等)
三、实践操作,深化认识。
1、组织活动——折一折
(1)每个学生剪下附页中的图1,先对折,看两边是否完全重合,再打开,看折痕的位置。
(2)学生小组合作,完成折一折。组织学生将自己小组折出的对称图形进行展示并汇报各自的折法。
(3)学生认识对称轴,中间这条折痕我们就把它叫做对称轴,用虚线表示。
请学生用铅笔画出你们剪出的对称图形的对称轴。
2、小结:通过折、画,小朋友们都认识了轴对称图形,那么现在谁能为大家介绍一下这样的图形。
得出结论:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就叫做轴对称图形。
折痕所在得直线叫做对称轴。
四、巩固练习,深化认识。
1、看下面那些图形是轴对称图形。
2、找一找下列哪些数字、汉字、字母是轴对称图形。
3、用对折的方法找出下面图形的对称轴
五、回归生活,体会美感。
1、谈一谈:其实生活中也有很多对称的图形、物体,你能说一说吗?
2、欣赏生活、艺术、自然、建筑、剪纸等领域的对称之美。
六、总结全课,升华主题。
通过这节课的学习,你有什么收获?
七、板书设计、
轴对称
对折:两边完全重合——轴对称图形
折痕——对称轴
对称图形 篇七
3.2中心对称与中心对称图形(1)【教学目标】 经历观察。操作。分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质。 【教学重点】 ⒈中心对称的涵义 ⒉中心对称的性质。 ⒊成中心对称的图形的画法【教学难点】 ⒈中心对称的性质。⒉成中心对称的图形的画法【设计思路】 通过具体的中心对称实例,让学生经历观察。操作。分析等数学活动,从而让学生认识中心对称,知道中心对称的性质,最后通过画图操作,进一步加深对性质的理解,同时掌握利用中心对称的基本性质作图的技能。【教学过程】一、情境引入利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转180 ,能与另一个重合吗?【设计说明:通过现实情境激发学生的好奇心和主动学习的欲望。】二、新课讲授 ⒈ 引出概念: 如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。【设计说明:通过对生活中的中心对称现象的描述,加深了对中心对称的理解,锻练了用数学语言进行表达的能力】⒉ 探索活动 活动一 用一张透明纸覆盖在图3-5上,描出四边形abcd。用大头针钉在点o处,将四边形abcd绕点o旋转180度 问题一:四边形abcd与四边形 关于点o成中心对称吗?问题二:在图3-5中,分别连接关于点o的对称点a和 、b和 、c和 、 d和 。你发现了什么?
成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分
【设计说明:让学生在操作与观察的基础上,发现中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质——对称点连线经过对称中心,且被对称中心平分】活动二 中心对称与轴对称进行类比轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分。【设计说明:中心对称与轴对称都是指两个图形按某种规则运动能互相重合的特殊位置关系,教学中,将他们进行类比,进一步加深对中心对称的理解】练一练 课本98页练习1【设计说明:学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。本题是中心对称性质的直接运用。】活动三 利用中心对称基本性质作图 操作1 作点关于点的对称点 【设计说明:学生通过自己阅读,获取作图方法,陪养了学生自学能力】 操作2 作线段关于点成中心对称的图形 操作3 作三角形关于点成中心对称的图形【设计说明:这2个操作活动,是在第1个操作活动基础上的逐步加深。培养学生对问题的分析能力,和对知识的迁移能力。】活动四 课本98页练习2【设计说明:在学生看过与简单做过的基础上,加深对作图技能的掌握】试试看 把课本98页练习2稍改一下:其他条件不变,把点d放到δabc内部【设计说明:拓展与提高,使学有余力的学生得到更高的发展】三、课堂小结 ⒈ 经历观察、操作等数学活动,通过具体实例认识中心对称,探索中心对称的性质; ⒉ 经历利用中心对称基本性质作图的过程,掌握作图的技能。【设计说明:小结新知,加深记忆。最好让学生自己总结所学内容。】四、作业布置 习题3.2 第3题【设计说明:加强练习,巩固新知】
上一篇:苏科版八上 3.1图形的旋转 案例1
下一篇:苏科版八上 3.2中心对称与中心对称图形(2) 教案
他山之石,可以攻玉。快回答为大家整理的7篇《图形的对称》教案到这里就结束了,希望可以帮助您更好的写作对称图形。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。