1. 主页 > 知识大全 >

等腰三角形的教学设计【6篇】

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。为了加深您对于等腰三角形的写作认知,下面快回答给大家整理了6篇等腰三角形的教学设计,欢迎您的阅读与参考。

等腰三角形 篇一

9.3章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究——9.3 等腰三\www.kuaihuida.com\角形

(板书课题) 9.3 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业,引导预习:

P86 习题9.3 1、3、4 预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

9.3章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究——9.3 等腰三角形

(板书课题) 9.3 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业,引导预习:

P86 习题9.3 1、3、4 预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

等腰三角形 篇二

§14.3.1.1 (二)

教学目标

1、理解并掌握等腰三角形的判定定理及推论

2、能利用其性质与判定证明线段或角的相等关系。

教学重点

等腰三角形的判定定理及推论的运用

教学难点

正确区分等腰三角形的判定与性质。

能够利用等腰三角形的判定定理证明线段的相等关系。

教学过程:

一、复习等腰三角形的性质

二、新授:

i提出问题,创设情境

出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度。

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

ii引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证。

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

4.引导学生说出引例中地质专家的测量方法的根据。

iii例题与练习

1.如图2

其中△abc是等腰三角形的是 [ ]

2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).

②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).

③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.

④若已知 ad=4cm,则bc______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。

练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?

iv课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

v布置作业

1.阅读教材

2.书面作业:教材第150页第12题

3、《课堂感悟与探究》

等腰三角形 篇三

教学目标:

知识技能

了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题。

数学思考

培养学生探究思维、逻辑思维能力,探索引辅助线的规律。

情感态度与价值观:

渗透"实践--理论--实践"的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯。

教学重点与难点

重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题。

难点:引辅助线证明定理和推论1的应用。

教学过程与流程设计

引导性材料:

1.学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)

2.教师用等腰三角形纸片演示两腰叠合,再把纸片展开。

提问:你能发现等腰三角形还有什么特性吗?

(引入课题,明确目标)(显示教学目标)

教学设计:

问题1:怎样来证明“等腰三角形的两个底角相等”呢?

已知:如图,△abc中,ab=ac.

求证:∠b=∠c.

(方法1)证明:作顶角的平分线ad.

在△bad和△cad中。

ab=ac (已知)

∠1=∠2 (辅助线作法)

ad=ad (公共边)

∴△bad≌△cad(sas)

∴∠b=∠c(全等三角形的对应角相等)

问题2:上述命题还有哪些证法?

方法2:作底边bc上的高ad. (证明过程由学生口述)

方法3:作底边bc上的中线ad.(证明过程由学生口述)

(演示):等腰三角形的性质定理 等腰三角形的两个底角相等

(简写成“等边对等角”)

观察上述三种方法,思考如下问题:

(1)在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?

(2)在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?

(3)在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。

(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合。)

练习:填空,在△abc中,

(1)∵ab=ac,ad⊥bc,

∴∠  =∠  , = .

(2)∵ab=ac,ad是中线,

∴  ⊥  ,∠  =∠  .

(3)∵ab=ac,ad是角平分线,

∴  ⊥  , = .

问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?

推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)

已知:如图,△abc中,ab=ac=bc.

求证:∠a=∠b=∠c=60°

证明:∵ ab=ac,

∴∠b=∠c(等边对等角),

∵ac=bc,

∴∠a=∠b(等边对等角),

∴∠a=∠b=∠c,

∵∠a+∠b+∠c=180°(三角形内角和定理),

∴∠a=∠b=∠c=60°

例题解析:

例1:填空,1.在△abc中,ab=ac.

(1)若∠a=50°,则∠b= °,∠c= °;

(2)若∠b=45°,则∠a= °,∠c= °;

(3)若∠b=∠a,则∠a= °,∠c= °;

(4)若∠b=2∠a,则∠a= °,∠c= °.

2.等腰三角形的一个角是40°,则它的底角是 .

3.等腰三角形的一个角是120°,则它的底角是 .

例2:已知,如图(6),房顶的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋椽ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数。

解:在△abc中,

∵ab=ac(已知),

∴∠b=∠c (等底对等角),

∴∠b=∠c=(180°-∠bac)=40°,

(三角形内角和定理),

又∵ad⊥bc(已知),

∴∠bad=∠cad(等腰三角形顶角的平分线与底边上的高互相重合),

∵∠bac=100°,

(7) ∴

课堂练习:

已知:如图(7)中的三角形测平架中,ab=ac,在bc的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上。

求证:(1)ad⊥bc;

(2)这时bc处于水平位置,为什么?

课堂小结:

1.等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;

2.等腰三角形性质定理的推论1、推论2;

3.由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”。

4.掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙。

作业:习题14.3 第6、7题(作业本),其他课本

等腰三角形的教学设计 篇四

一、教学目标

1.知识与技能

(1)理解公理,能够举一反三,证明等腰三角形的性质定理;

(2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;

(3)熟悉证明的基本步骤和书写格式

2.过程与方法

2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理,发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平。

3.情感态度及价值观

使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯。

二、教学重点、难点

重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法。

难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求。

三、教具准备

(两个等腰三角形、彩色粉笔、教案、尺子)

四、教学过程

1.复习旧知,引入新知

(1)请同学们回忆判定三角形全等的公理有哪些?

公理:三边对应相等的两个三角形全等(SSS)

公理:两边及其夹角对应相等的两个三角形全等(SAS)

公理:两角及其夹边对应相等的两个三角形全等(ASA)

(2)推论呢?

两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)

(3)根据全等三角形的定义,我们可以得到定理:全等三角形的对应边相等、对应角相等

学生讨论:等腰三角形有哪些性质吗?根据等腰三角形的性质给予证明。

设计意图:为学生对本节课证明等腰三角形的定理作铺垫

2.新授课

猜想:如果一个三角形是等腰三角形,那么这个三角形的两个底角有什么关系呢?如何证明呢?

(1)画出图形;

(2)根据图形写出已知求证;

(3)写出推理过程

已知:如图1-1,在△ABC中,AB=AC,求证:∠B=∠C

分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线)

设计意图:锻炼学生的动手操作能力

证明:如图1-2,取BC的中点D,连接AD

(已知)AB、AC,在△BAD和△CAD中,BDxCD(已作),AD、AD(公共边),∴△BAD≌△CAD(SSS)

∴∠B=∠C(全等三角形的对应角相等)你还有其他证明方法吗?与同伴交流作出底边上的高或作出顶角的平分线,大家可以自己证明

3.巩固练习

在△ABC中,AB=AC

(1)若∠A=40°,则∠C等于多少度?

(2)若∠B=72°,则∠A等于多少度?

设计意图:加强学生对等腰三角形定理的认识

4.引出推论

在图1-2中,观察AD还具有怎样的性质?为什么?由此能得到什么结论?我们作出了底边上的中线,已证明△BAD≌△CAD

所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等)。因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线

由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合(简称“三线合一”)

5.随堂练习

(1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2cm,则DC=___cm,BC=___cm

(2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD

①求证:△ABD是等腰三角形,②求∠BAD的度数

图1-4

6.课堂小结

等腰三角形的性质定理:

等腰三角形的两个底角相等(简写成“等边对等角”)。等腰三角形顶角的平分线平分底边并且垂直于底边。

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。

初中数学等腰三角形的性质教案 篇五

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点

等边三角形的。判定定理和直角三角形的性质定理。

教学难点

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法

教学后记

教学内容及过程

一、定理:

一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:

同步练习

等腰三角形 篇六

知识结构:

重点与难点分析:

本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

一。教学目标:

1.使学生掌握定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征。

二。教学重点:定理

三。教学难点:性质与判定的区别

四。教学用具:直尺,微机

五。教学方法:以学生为主体的讨论探索法

六。教学过程:

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。

2.推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

要让学生自己推证这两条推论。

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可。

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在 中, (已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。

2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。

证明: DE//BC(已知)

BE=DE,同理DF=CF.

EF=DE-DF

EF=BE-CF

小结:

(1)等腰三角形判定定理及推论。

(2)等腰三角形和等边三角形的证法。

七。练习

教材 P.75中1、2、3.

八。作业

教材 P.83 中 1.1)、2)、3);2、3、4、5.

九。板书设计

夫参署者,集众思,广忠益也。上面的6篇等腰三角形的教学设计是由快回答精心整理的等腰三角形范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。