1. 主页 > 知识大全 >

圆的周长教案优秀4篇(圆的周长教案模板)

作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。那么优秀的教案是什么样的呢?下面快回答为大家整理了4篇圆的周长教案,希望可以帮助您更好的写作圆的周长计算。

圆的周长教案 篇一

一、教学目标

1、结合具体事例,经历灵活运用圆的周长公式解决实际问题的过程。

2、能灵活运用圆的周长公式解决简单的实际问题,能表达解决问题的思路和方法。

3、了解现实生活中有许多与圆周长有关的问题,获得运用知识解决问题的成功体验。

二、课时安排

1课时

三、教学重点

能灵活运用圆的周长公式解决简单的实际问题。

四、教学难点

能表达解决问题的思路和方法。

五、教学过程

(一)导入新课

出示例5:一个圆形花坛的周长是251.2米。花坛的直径是多少米?你从中读出什么数学信息?

(二)

讲授新课

师生交流数学信息,探究问题:花坛的直径是多少米?

生探究后交流展示方法:

小结:根据C=πd,可以列方程解答。

(三)

重难点精讲

生自主探究交流后计算方法:

解:设花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

答:花坛的直径是80米。

想一想:还可以怎样求花坛的直径?

生交流想法。

生探究后交流:

251.2÷3.14=80(米)

答:花坛的直径是80米。

(四)

归纳小结

通过刚才的探究,你能说说你的收获吗?

师生交流后小结:

如果用C表示圆的周长,则C=πd或C=2πr

知道圆的周长,求圆的直径和半径,可以用算术法解答,也可以用方程来解答。

解答与圆的周长有关的实际问题时,先想想圆的周长计算公式,再根据已知条件来解答。

(五)

随堂检测

1、先估计,再求出圆的直径。

C=12.56米

C=15.7厘米

C=62.8厘米

2、计算

2.6+1.4=

0.52-0.28=

0.17+0.83=

3×2.4=

5×0.15=

0.78÷6=

3、填表

4、滚铁环是一种有趣的儿童游戏。如果用一根90厘米的铁片弯成一个圆形铁环,这个铁环的半径大约是多少厘米?(得数保留整数)

5、用一根绳子绕这棵树干,量得10圈的绳子是12.56米。这棵树树干横截面的直径大约是多少厘米?

6、圆形拱门的高度要在2.4——2.7米之间才符合标准。一个圆形拱门门框的周长大约是7.85米。它的高度符合标准吗?

7、一个圆形花圃的直径是25米。沿着它的边线大约每隔0.5米种一棵杜鹃花,一共要种多少棵杜鹃花?

六、板书设计

圆的周长的应用

如果用C表示圆的周长,则C=πd

或C=2πr

知道圆的周长,求圆的直径和半径,可以用算术法解答,也可以用方程来解答。

解答与圆的周长有关的实际问题时,先想想圆的周长计算公式,再根据已知条件来解答。

七、作业布置

1、右面是一个国际标准田径跑道的示意图。跑道的一周是多少米?

2、预习第96、97页有关内容。

圆的周长教案 篇二

教学目标:

用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

教学过程:

一、探究解决问题的方法。

⑴出示情境图。

⑵介绍解决方法。

1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

⑶沟通两种方法间的联系。

师生一起解方程:x=251.2÷3.14,x=80。

观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

⑷联想。

想:算出圆的直径有什么价值。

可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

二、多种练习,内化知识。

⑴独立完成试一试和练一练。

⑵解答练习十八第6题。

独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

⑶解答练习十八第8题。

学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

三、作业,练习十八第7题。

圆的周长教案 篇三

教学设想:

利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

教学内容:

小学数学义务教育教材十一册第137~138页“圆的周长”

教学目标:

1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2. 培养学生的观察、比较、分析、综合及动手操作能力;

3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

教学重点:

推导总结出圆周长的计算公式。

教学难点:

深入理解圆周率的意义。

教学准备:

电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

教学过程:

一、创设情境,引起猜想

(一)教师播放课件 激发学生兴趣

黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周

1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

4.反馈:你是用什么方法测出来的?

生1:“滚动”——把实物圆沿直尺滚动一周;

生2:“缠绕”——用绸带缠绕实物圆一周并打开;

5.小结各种测量方法:(板书)化曲为直

6.创设冲突,体会测量的局限性

教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

(三)合理猜想,强化主体

1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

生:我猜圆的周长跟直径有关。

2.师课件演示:直径越大,周长越长;直径越小,周长越小。

3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是 www.kuaihuida.com 直径的几倍?

(生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

二、实际动手,发现规律

(一)分组合作

1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

2.反馈数据

生1:我们小组算出圆的周长大约是直径的3.4倍。

生2:我们小组算出圆的周长大约是直径的3.2倍。

生3:我们小组算出圆的周长大约是直径的4倍。

师:课件演示:圆的周长总是直径的三倍多一些。

(二)介绍祖冲之

这个倍数通常被人们叫做圆周率,用希腊字母π表示。

板书 :圆周率=圆的周长÷直径

早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

这个倍数究竟是多少呢?我们来看一段资料。

(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4.理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

(三)总结圆周长的计算公式

1. 如果知道圆的直径,你能计算圆的周长吗

板书:圆的周长 = 直径× 圆周率

C = πd

2. 如果知道圆的半径,又该怎样计算圆的周长呢?

板书: C = 2πr

3.应用

(1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

(2)课题外的圆的直径是20厘米,用哪个公式计算?

生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

(3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

三、巩固练习,形成能力

1.判断

(1)圆的周长是直径的π倍。

(2)大圆的圆周率大于小圆的圆周率。

(3)π=3.14

2.出示例1,学生自己计算。

3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

四、课内小结,扎实掌握

通过今天的`学习,你有什么收获?

五、课外引申,拓展思维

一个茶杯口的直径你有什么方法知道?

圆的周长教案 篇四

【教学目标】

1、让学生知道什么是圆的周长。

2、理解并掌握圆周率的意义和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、培养学生的观察、比较、分析、综合及动手操作能力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、引课

(课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?

对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。

今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?

对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)

二、认识周长

1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)

师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。

2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说

3、那你们想圆是由什么线围成的呢?(曲线)

师:那我们可以说围成圆一周的曲线的长,就是圆的周长。

4、那谁有测量圆周长的方法?(绕线发,滚动法)

5、小组合作

请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?

要求:

1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。

2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。

3)请同学们小组分工,合作完成(3分30秒)

6、我想问问大家,你们是怎样得到圆的周长的?

谁愿意到前面来给大家讲一讲,拿着你手里的圆

生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)

生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)

生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)

7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。

8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。

(生;非常大的和非常小的都不可以)

9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)

其实,我们大家都做过这个实验是不是?看好了!(转动小球)

10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)

三、探究周长与直径的关系

1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长

2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)

有说半径,有说直径,能说说你的理由吗?(指名说一说)

同学们都觉得和半径或直径有关系。

3、课件:请同学们认真的看大屏

这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)

对,是这个直径是1分米的圆的周长。

再看(展开直径是0.8、0.6分米圆的周长)

4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)

那看来确实直径可以决定圆的周长,是这样吗?

5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)

6、为什么找倍数关系?(因为正方形的周长是边长的4倍)

你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。

(这个小组非常好,有人测量,有人记录,有人计算,分工明确)

填完之后,互相说一说你发现了什么。

7、展示一个小组的数据

1)其他组也计算出来了是吧,我们不再往黑板上写了。

2)有没有算出来和黑板上不一样的?

3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)

四、圆周率

1、那你们讨论出周长和直径的关系了吗?(3倍多一些)

2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)

这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系

3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)

4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)

5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示

6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。

通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)

7、师:刘徽:也是研究出了圆周率的关系

祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?

8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)

那现在谁知道怎么计算圆的周长?能得出什么样的公式?

字母公式:C=d

知道半径怎么求周长?C=2r

小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?

聪明在于勤奋,天才在于积累。上面这4篇圆的周长教案就是快回答为您整理的圆的周长计算范文模板,希望可以给予您一定的参考价值。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。