作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。以下这6篇人教版小学六年级数学圆的面积教案是来自于快回答的圆的面积教案的范文范本,欢迎参考阅读。
《圆的面积》教学设计 篇一
一、创设情境,引入新课。
1、课前谈话
师:中国古代有许多聪颖机灵的少年儿童,曹冲就是其中的一位。“曹冲称象”的故事你们熟悉吗?谁愿意给大家讲一讲。(指名一位学生介绍故事简介)
师:老师有个问题不明白,本来想知道大象的重量,曹冲为什么要称那些石头?
生:石头的重量和大象的重量相等。
师:你们说的这点很关键,必须保证石头和大象重量相等,这样称出的石头重量就是大象的重量。但是曹冲为什么不直接称大象呢?
生:因为大象太重,不能直接用秤称出来。
师:是啊,当时条件下,无法直接称出大象的重量,所以曹冲才想出用石头代替大象的方法。其实这也是我们数学学习中经常要用到的“转化”的方法,也就是当我们遇到新问题,不能直接解决时,可以把它转化成已有的知识和方法来解决的问题。
2、复习铺垫
师:现在请同学们回忆一下平行四边形的面积公式推导我们是把它转化成什么图形来计算的?
生:是把平行四边形转化成长方形来计算的。把平行四边形沿着它的高剪下来,平移到另一边,这样就拼成了一个长方形。
师:那么转化后的长方形的长与宽和平行四边形有什么关系?
生:长方形的长相当于平行四边形的底,宽相当于平行四边形的高。
师:棒极了!请同学们看大屏幕。(展示平行四边形转化成长方形的过程。)那大家还记不记得三角形、梯形它们是怎样转化的?(课件演示三角形、梯形转化成平行四边形的过程。)
师:通过这些图形的转化,你发现了什么?
生: 把图形转化成我们学过的图形。
师:嗯,不错,是运用了转化的方法,看来这是个不错的方法,帮了我们很多忙!
3、创设生活情境
师:现在请同学们看大屏幕。请大家认真观察这幅图,说说从图中你发现的数学知识。(多媒体展示教材第16页上主题图。)
生1:我发现了喷水头转动一周所走过的地方刚好是一个圆形。生2:喷射的水的距离相当于圆半径,也就是5米。生3:周长也就是喷水所走过的路线。生4:我补充一点,喷水头相当于这个圆的圆心。
师:大家的发现真多,那么你们说说这个圆形的面积指的是那部分?
生:被喷到水的草坪大小就是这个圆形的面积。
师:也就是说圆所围成的平面的大小是圆的面积。(课件出示)那发现了这么多数学知识,你想提什么问题吗?
生1:这个喷水头转动一周的周长是多少?生2:所喷洒的草坪面积是多少?也就是这个圆的面积是多少?
4、导入新课
师:我们已知道圆的面积是圆所围成平面的大小,那怎样计算圆的面积呢?这就是我们今天要学习的内容。(板书课题)
二、引导探究,获取新知。
1、估计圆的面积大小。(多媒体出示教材第16页“估一估”:半径是5米的圆的面积是多少?)师:请同学们认真看题目,与同桌说说你是如何估算的?
生1:我是这样估计的,这个圆的面积比圆外的大正方形的面积小,而比圆内的小正方形的面积大,大正方形的面积是100平方米,小正方形的面积是50平方米,那么这个圆的面积大约在50~100平方米之间。生2:我先算了四分之一个大正方形的面积是25平方米,而圆外角落里的面积约为5平方米,那么四分之一个圆的面积约是20平方米,整个圆的面积大约就是80平方米。
师:哦,你把范围缩小了,估得真不错!
生:我是这样估算的,我先算了圆外四个角落的面积约为20平方米,用大正方形的面积100平方米减去20平方米等于80平方米。所以我估计这个圆的面积也是80平方米。
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果。如果我们遇到更大的圆,比操场还大的,那还能用这种方法吗?有什么更好的方法吗?
生1:如果知道圆的面积计算公式就好了。生2:我想能不能把圆也转化成我们学过的图形来计算。
师:对了,最直接最方便的就是用圆的面积计算公式来算。刚才怀洋同学说得很好!想把圆转化成我们学过的图形来计算,真不赖!接下来我们一起来探索圆的面积计算公式是怎样的?
2、探索圆的面积计算公式
(1)动手操作
师:那么大家想把圆转化成什么图形呢?请拿出你们课前准备好的圆,和小组里的同学剪一剪,拼一拼。看看能拼成什么图形?
(2)指名汇报,实图展示。
师:通过刚才同学们的相互协作,相信你们一定取得了不小的成果。下面请小组派代表上台来展示一下所拼成的图形。
生1:我们组把圆平均分成8份,拼成了个类似平行四边形的图形。生2:我们组是把圆平均分成16份,也拼成了个类似平行四边形的
图形。
师:现在请同学们观察一下,剪成8份和16份所拼成的图形有什么变化?
生:分成16份的拼成的图形更像平行四边形。
(3)操作反思
师:你们有什么发现?
生:要想拼成的图形更接近于平行四边形,可以把圆分的份数再多一些。
师:也就是说如果我们继续分下去,分成32份、64份,那么拼成的图形就越接近于平行四边形。现在我们让电脑来帮忙继续分下去,看看是不是像我们想的那样。
生:我发现了当把圆分成64份时拼成的图形完全可以算是个长方形了。
师:你观察得真细致!那我们完全可以大胆猜测,如果我们继续分下去,拼成的图形就越接近于长方形了。通过剪拼,我们发现,圆曲线的边展开了,分的份数越多,展开来圆的边就越直。这就是化曲为直的方法。
师:你们还有别的拼法吗?
生1:我们小组把圆平均分成了16份,不过是把圆转化成了类似于三角形的图形。
生2:我们小组也是把圆平均分成了16份,拼成的是个近似于梯形的图形。
师:真不错!你们想到的方法真多!可以把圆转化成平行四边形、长方形,也可以转化成三角形、梯形。那我们今天就来探索把圆转化成平行四边形或长方形来推导它的面积公式。
(4)思考讨论,观察汇报(课件呈现问题并讨论)
师:圆与转化成的长方形或平行四边形之间有怎样的关系?
生:通过刚才的动手剪拼,我认为把圆转化成长方形或平行四边形,它的形状变了,面积没变。其它小组的同学也是一样的看法吗?
生1:我还想补充一点,它的周长也变了。生2:圆的面积和长方形的面积相等。
生3:拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。(多指名几位同学回答,让展示图的同学上台拿着图边指边说, 最后师课件演示)
师:你们能否用长方形的面积公式推导出圆的面积公式,并说说你的理由。
生:因为长方形的长相当于圆的周长的一半,宽相当于半径,根据长方形的面积等于长乘宽,我可以得出,圆的面积等于圆周长的一半乘半径。
师:你们听明白了吗?再请几位同学来说说。
生:把圆转化成长方形,面积是相等的,长方形的长相当于圆周长的一半,宽相当于半径,所以圆的面积等于圆周长的一半乘半径。(圆周长的一半用字母表示,面积也用字母表示)
师:说得真好!老师也听明白了。(教师根据学生汇报有序地整理板书。)
板书: 长方形的面积 = 长 × 宽
↓ ↓ ↓
圆的面积 = 圆周长的一半 × 半径
s = πr(c/2) × r
= πr2
(5)小结
师: 现在要求圆的面积是不是很简单了,知道什么条件就可以求出? 生:半径。
师:那我们就利用这个公式回过头来算算刚才这个喷水头转动一周所喷洒的圆形草地的面积是多少?谁愿意上台来做做?(指名板演,讲评时说清算法。重点指出求圆面积只需要知道半径即可。)现在请大家来看看这段话,你能把它补充完整吗?(课件呈现问题和答案)
今天学习了《圆的面积》,我知道了把一个圆平均分成若干份,可以拼成一个近似的长方形,长方形的长相当于圆的( ),宽相当于圆的( ),因为长方形的面积=长×宽,所以圆的面积公式表示为( )。
三、练习应用,巩固新知。
师:现在,你们想不想利用刚刚学到的知识解决一些实际问题呢?有信心吗?
1“试一试”第一题指名板演,讲评时说清算法。2“试一试”第二、三题
师:观察一下,这题和第1题有什么不一样的?谁愿意上台来做?
(集体讲评,请板演的同学说说如何算的?)
生1:图中只给出了直径,要求圆的面积首先得知道半径,所以我先求出圆的半径等于0.1分米,再根据圆的面积等于圆周率乘半径的平方求出圆的面积。生2:第三题已知周长,我也是先求半径。根据圆周长等于圆周率乘半径乘2,算出半径等于周长除以圆周率再除以2等于1米,再根据圆面积等于圆周率乘半径的平方等于3.14乘1的平方求出面积。
四、全课总结。
师:短短的40分钟很快就过去了,通过这节课的学习,你有什么收获?有什么不明白的地方?
生1:我知道了圆的面积公式。生2:我知道了怎样求圆的面积。生3:我懂得了要求圆的面积需要先知道它的半径。生4:原来是把圆转化成长方形或平行四边形推出它的面积公式的。生5:我的收获是当我们碰到不能解决的问题时,可以把它转化成学过的知识来解决。
师:大家的收获真不少!我们不仅学会了求圆的面积,而且运用转化的方法推导出了圆的面积公式,这是同学们的第一个了不起;另外,我们能从生活中发现数学问题并应用所学知识解决问题,这是第二个了不起!老师希望你们继续留心观察我们的生活,从生活中发现数学问题并想办法取解决它。
五、布置作业:教材p19练一练第1~5题。
《圆的面积》教学设计 篇二
教学内容:圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:正确计算圆的面积。
教学难点:圆面积公式的推导。
教具准备:多媒体课件,圆片。
学具准备:把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
3. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(2)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
s=πr × r
s=πr2
师小结公式 s=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成做一做的第1、2题。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(cai课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
s=πr×r
s=πr2
《圆的面积》教学设计 篇三
教学目标:
1、引导学生推导出圆面积的计算公式,能运用公式灵活的计算,已知圆的半径、直径,求圆的面积。
2、在圆面积公式的推导过程中,通过猜测、观察、对比、发现、尝试等数学方法,探索圆面积的计算公式,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。
3、使学生感受圆的面积的奥秘,培养学生学习数学的兴趣,并将所学知识运用于生活实际。
教学过程:
一 、创设情境,导入新课。
课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?
师:现在你想提什么数学问题?——揭示课题:圆的面积
二、探索合作,推导公式。
1、认识圆的面积
师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?
出示结语:圆所占平面的大小叫做圆的面积
[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]
1、 估算圆的面积
师:圆的面积有多大呢?我们先来估计一下吧。如图所示:以这个圆的半径r为边画一个小正方形。
提问:小正方形的面积怎样表示?(板书:r2)大正方形的面积又怎样表示?如果用r来表示大正方形的面积又如何表示?(4 r2)那么,认真观察一下,与大正方形比,圆的面积与大正方形有什么关系?(老师把学生答案写在黑板上。)
师:很显然,这个圆的面积小于<4 r2.这个估计只能是个大概,要准确地求出圆的面积,还必须找到科学的方法。
[设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r2的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]
3、积极动脑,讨论推导方法
回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的? ——引导转化
[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]
4、 小组合作,推导公式
师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。
师:比较一下,你更喜欢哪一种?为什么?
你们是沿着什么来剪的?为什么要沿着半径来剪呢? (圆的面积与半径有关)。
师:这种思路给了我们很大的启发!按照这种思路拼成的近似的平行四边形你们都很满意了吗?那么有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)
师:请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?(学生展示并汇报)
如果再折下去可以吗?现在老师就把你们折的这几种方案输入电脑。八等份、十六等份、三十二等份。(课件演示八分法、十六分法、三十二分法的展开图)
师:观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?—— 发现:平均分的份数越多,拼成的图形越接近长方形。
[设计意图:通过小组汇报、采访小组等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,并通过电脑验证,使学生进一步明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]
三、转化成长方形,研究推出圆面积公式——解决问题
1、设疑:我们沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。今天,我们就把圆进行十六等分来研究。请四人组拿出十六等份的圆和讨论提纲,小组合作探究 ,动手摆一摆,边观察、边讨论、边记录、边推导,看哪组合作得最快最好!
课件出现以下问题:(1)长方形的长相当于圆的 ?(2)长方形的宽相当于圆的 ? (3)长方形的面积相当于圆的 ?(4)因为长方形的面积=
所以圆的面积= 。
2、小组四人带讨论提纲汇报拼的过程并演示,媒体演示公式推导过程
3、揭示字母公式,验证猜想
4、小结:可见要求圆的面积只要知道什么就行?(半径r)
[设计意图:通过分组讨论汇报、试写面积公式等不同形式。再借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
四、应用知识,解决问题
1、师:现在我再回到羊吃草的问题上来看看,告诉你们拴着羊的绳子长是3米,你能运用所学的知识解决羊吃草的问题吗?(学生运用公式直接做,独立解决,集体订正。)
2、完成p69做一做第一题一个圆形茶几桌面的直径是1m,它的面积是多少?
3、出示喷灌装置图,
师:瞧,这是一种自动旋转喷灌装置。认真观察一下,这里隐藏着什么样的数学问题呢?公园草地上一种自动旋转喷灌装置的射程是15米。它能喷灌的面积有多少平方米?
提示:射程相当于圆的半径,灌溉面大约相当于圆的面积,
4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、课堂总结,渗透学法(略)
(本设计在首届智慧互动成长全国青年教师教学设计大赛中获一等奖。)
设计思路:
一、创设生活情境和问题情境,激发学习兴趣。
通过课件演示,先创设羊吃草的情境,引出求圆的面积的问题,再通过课件演示圆片的上色过程,让学生感知并认识圆的面积。在学习新知之前,通过正方形和圆形的大小比较,让学生猜测并估算出圆的面积大约的范围,激发学生带着悬念,迫不及待想去推导出圆的面积公式来验证自己的猜测。
二、动手剪拼,体验“化曲为直”
让学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生用“转化”的好方法,去探究圆的面积计算公式。放手让学生动手把圆剪拼成各种图形,鼓励不同拼法,让学生通过比较得出沿半径剪拼的方法是较为科学的,让学生尝试把圆拼成学过的平面图形,为后面推导面积的计算公式作了充分的铺垫。
三、多媒体演示操作,感受知识的形成
通过多媒体演示,分小组拼摆学具,让学生多种感官参与。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样以学生为主体,让学生在学习过程中,思维的能动性和创造性得到充分激发,探索能力、小组合作能力,分析问题和解决问题的能力都得到了提高。
四、分层练习,体验运用价值
结合所学的知识,让学生学以致用。解决了创设的情境问题等基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的指导侧重点。
教学反思:
本节课较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐。学生亲身经历提出猜想、动手实践、分析验证、得出结论的过程,对知识进行“再创造”。 他们在自主探索与合作交流的过程中能较好地理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在“猜想—验证”来展开知识的发生发展过程,促使学生主动探索;创设开放的问题情境,为学生提供解决实际问题的机会,较好地培养学生应用数学的意识;学生在民主、和谐的教学氛围中,以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理等活动,全面参与新知的发生、发展和形成过程,学会与人交往,自我反思,自主评价。整个知识的形成过程,对提高学生的动手操作能力,小组合作能力,探索和创新能力以及培养学生良好的思维品质,具有十分积极的作用。但也存在一些不足之处:这节课我在课堂评价方面还有所欠缺,在指导学生推导“圆的面积”计算公式时,学生的思维又比较活跃,提出了多种拼法,由于课堂时间有限,有所顾虑,处理的偏急躁些,没有真正放手让学生去深究,无形中抹杀了一些较好资源;其次,学生在课堂上的“再创造”显然是不可能完全离开教师指导的,一有指导,就意味着学生的一部份自主要失去,所以,老师的指导和学生的自主两者之间如何取得平衡?这些问题将是我以后要探索的。
圆的面积教案 篇四
教学目标
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备
教学重点和难点:
圆面积的计算公式推导。
教学准备:
圆形纸片、剪刀、多媒体课件等。
教学过程
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)
教学过程:
一、开门见山,揭示课题
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)
二、第一次探究,明确思路,体会“转化”的数学思想方法
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)
怎样让扇形和三角形的面积接近一些?
现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这《www.kuaihuida.com》段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)
四、第三次探究,深化思维,推导公式
刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)
五、解决问题
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)
(教师组织交流。)
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)
六、小结
《圆的面积》教学设计 篇五
教学内容:
义务教育课程标准实验教科书第十一册P69~71例1、例2。
教学目标:
1、认知目标:使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标:经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标:引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
教学难点:
理解圆的面积计算公式的推导。
教学准备:
相应课件;圆的面积演示教具
教学过程:
一、情境导入
出示场景¬——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业。
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
圆的面积教案 篇六
教学内容:
教科书第67-68页。
教学目标:
1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。
2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。
德育目标:
渗透极限思想,进行辩证唯物主义观念的启蒙教育。
教学重点:
正确计算圆的面积
教学难点:
圆面积公式的推导
学具准备:
水彩笔、剪刀、附页1
教具准备:
多媒体课件
教学过程:
一、 导入新课
请看一幅图,从图中你发现了什么信息?
只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。
二、新授
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的'公式吗?
8、汇报讨论结果,师板书
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
3)书P703.
三、总结:
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
板书设计:
圆的面积
剪、拼==》转化
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
S圆=πr2
教后反思:
本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。
汉屈群策,策屈群力。以上就是快回答给大家分享的6篇人教版小学六年级数学圆的面积教案,希望能够让您对于圆的面积教案的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。