1. 主页 > 知识大全 >

一元一次方程教学反思(优秀12篇)(一元二次方程单元复习教学反思)

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,通过它可以正确认识以往学习和工作中的优缺点,为此要我们写一份总结。但是总结有什么要求呢?为了加深您对于一元一次方程的写作认知,下面快回答给大家整理了12篇一元一次方程教学反思,欢迎您的阅读与参考。

.2一元一次方程 篇一

《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突出重点,特别是要突破学生学习的难点,这是我们数学教师不断研究和探讨的问题。

一、成功之处:

1、能创设一个有趣的问题情境,与学生日常生活有关的问题切入,七年级的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。充分调动学生的积极性。

2、能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

3、恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

4、营造了一种非常宽松、愉悦的课堂气氛,让学生在高兴的情绪下积极和老师互动,和同学互动、讨论。

二、不足之处:

1、七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

2、本节课的教学中,我忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。

3、在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。

4、教学内容量偏大,没有正确的分配时间,以致没有时间让学生进行自我归纳和总结。没有达到应有的学习效果,教学效果不佳。

三、改进方法:

作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。在以后的教学中,我会继续发扬我的成功之处,逐步完善我的不足之处,我将尽自己最大的能力,上好每一堂课。

元一次方程教学反思 篇二

本课以学生比较感爱好的《家有儿女》为话题引人,然后围绕刘星他们一家的实际问题分别设计成打折、积分、最佳方案问题。将问题呈现给学生,每一类型的第一道题目带领学生分析,这一类型的其他题目有学生自己分析解答,提供给学生探索归纳的空间。

然后通过教师的点拨,引导学生独自完成。再通过师生共同合作参与,由学生自主探索得出用式子表示的等量关系,在整个新授过程中,充分发挥了学生的主体作用。通过学生自主探索,在合作交流过程中进一步对打折、积分、最佳方案问题进行复习。教师在过程中扮演了的参与者、合作者、引导、启迪者的角色。这充分体现了新课标的教学理念。

但是通过这一节课和别的学校老师相比较还有很多不足之处。

1. 在整节课的教学中,老师应始终保持平静的心态,接近学生,不要离学生太远。

2. 在教学应始终保持笑脸。

3. 在和学生交流过程中,应多鼓励他们大胆地进行思考和回答问题。

4. 整节课的教学中,语言的过渡和衔接。

5. 由于时间把握的不好,未能将习题处理完。

应把更多的空间留给学生,让学生充分展示自己的能力。

另外,本节教学复习的是七年级上册实际问题与一元一次方程,由于是复习课,加上我上课的班级学生成绩比较优秀,同学们课前已经预习过,基本知识比较扎实了,于是本人在教学环节中注重做到以下几点:

1、注重审题习惯的`培养

上课开始设计了一个小“陷阱”,仔细阅读练习纸,在规定时间按要求完成。由于学生没有把练习纸上的内容读完,都没有在意识到老师的“陷阱”。于是使学生切身体会到审题的重要性。并且在复习完内容后,让学生说说列方程解应用题的一般步骤后,提问哪一步骤最重要?(审题)然后出示华应龙老师编写的审题诗,使学生在今后的学习中意识到审题的重要性,养成仔细审题的好习惯。

2、注重突出学生的主体地位

由于是复习课,知识点学生基本已经掌握好了。于是在讲解每一题时,都先让学生自己独立尝试解决,然后再指名学生讲解解题方法与自己的想法,把主动权交给学生。

3、注重知识点的比较

复习完列方程解决实际问题后,我又设计一道,一倍数已知的问题:进一步让学生体会在什么情况下才需要列方程来解决实际问题。教会学生灵活根据实际情况,选择正确的方法,我认为这才是最重要的。

4、注重知识的拓展

由于是复习课,在复习掌握基本知识点的同时,又要有一点拓展提升,发展学生的思维。所以我设计了一道“自我挑战”题,但与有时间关系,课堂上没有来得及当堂解决,而是留到了课后。

初中七年级上册数学《解一元一次方程》教案优质 篇三

一、指导思想

坚持党的基本路线,拥护中国共产党的领导,贯彻党的教育方针、政策,使自己真正成为时代前进的促进派。认真学习《教师法》、《教育法》、《义务教育法》、《教师职业道德规范》及《未成年人保护法》等法律法规,使自己对各项法律法规有更高的认识,做到以法执教。忠诚于党的教育事业,立足教坛,无私奉献,全心全意地搞好教学工作,做一名合格的人民教师。

二、学生情况分析

本学期我担任七年级3班数学教学,该班共有学生38人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

三、教学目标

(一)知识与技能

1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1.采用思考、类比、探究、归纳、得出结论的方法进行教学;

2.发挥学生的主体作用,作好探究性活动;

3.密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力。

(三)情感态度与价值观

1.理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2.逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

四、教材章节分析

第一章《有理数》

1.本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。

2.本章的地位及作用

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

第二章《整式的加减》

1.本章的主要内容

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2.本章的地位及作用

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

第三章《一元一次方程》

1.本章的主要内容

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2.本章的地位及作用

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想——方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

第四章《图形认识初步》

1.本章的主要内容、地位及作用

本章主要介绍了多姿多彩的图形(立体图形、平面图?),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2.教学重点与难点

教学重点:(1)角的比较与度量;(2)余角、补角的概念和性质;(3)直线、射线、线段和角的概念和性质

教学难点:(1)用几何语言正确表达概念和性质;(2)空间观念的建立。

五、具体教学策略

1.认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。

2.兴趣是的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3.引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4.引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5.运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。

6.培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7.进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

8.站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

9.开展课题学习,把学生带入研究的学习中,拓展学生的知识面。

六、进度安排

教学内容课时

1.1正数和负数1课时

1.2有理数4课时

1.3有理数的加减法4课时

1.4有理数的乘除法5课时

1.5有理数的乘方3课时

本章复习2课时

2.1整式2课时

2.2整式的加减3课时

本章复习2课时

3.1从算式到方程4课时

3.2从古老的代数说起—一元一次方程的讨论(1)4课时

3.3从“买布问题”说起—一元一次方程的讨论(2)4课时

3.4再探实际问题和一元一次方程4课时

本章复习2课时

4.1多姿多彩的图形4课时

4.2直线、射线、线段2课时

4.3角的度量3课时

4.4角的比较和运算3课时

本章复习2课时

元一次方程 篇四

一、说教材 方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。1、教 学 目 标(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·2、了解一元一次方程解法的一般步骤·(2)、能力目标: 经历 "把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望 2、通过埃及古题的情境感受数学文明。2、教学重点:通过"去分母"解一元一次方程3、教学难点:探究通过"去分母"的方法解一元一次方程二、说教法:在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。我的教学设计的指导思想是: 1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。3、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。三、说学法教学活动流程图 活动内容和目的活动1列方程解决实际问题 创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·活动2解含有分母的一元一次方程 以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·

活动3 "去分母"的方法解一元一次方程 用"去分母"的方法解一元一次方程,掌握 "去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·活动4 小结 总结本节收获 活动1、创设问题情境: 引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题· 问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(1)能不能用方程解决这个问题?(2)能尝试解这个方程吗? (3)不同的解法有什么各自的特点? 设计意图:1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识· 2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是 "去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母·这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法·也首次由学生自行突破了难点。 3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力· 活动2 下面方程 可以怎样求解?观察方程,回答教师提出的问题并对学生的回答进行总结:先去分母·怎样去分母? 解去掉分母后的这个方程 归纳总结去分母的方法:在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即"等式两边同时乘同一个数,结果仍相等·"呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点·巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。 通过对错例的辨析,加深学生对 "去分母"的认识,避免解方程时出现类似错误· 去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决通过在解方程过程中"去分母"这一步骤体会转化思想·活动3 解方程 设计意图:用实践来加深对 "去分母"的方法解一元一次方程的认识· 结合本题思考,能总结解这种方程的一般操作过程吗? 巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定·了解对方程的每一次变形都是为了将方程最终化归为的形式·解题时应根据题目特点,合理选择解题步骤·小结活动4总结 (1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法; (2)学生是否掌握了一元一次方程解法的一般步骤; (3)学生是否能准确表达自己的观点· 最后复习、巩固本节的知识,学会总结反思·四。评价分析数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。

七年级数学《一元一次方程》教案 篇五

教学内容:

人教版七年级上册3.1.1一元一次方程

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,

认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:

建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:

根据具体问题中的相等关系,列出方程。

教学准备:

多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25

师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,

(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是()?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=84

师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!

五、我的课堂,我做主,我来说

生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;

生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;

生3:我会检查一个数值是不是方程的解;

生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!

生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!

师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!

课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!

六、基础巩固与知识延伸

(1)基础练习见同步练习册

(2)拓展练习如下;

1、下列四个式子中,是一元一次方程的是()

A.1+2+3+4>8B.2x3C.x=1

D.|10.5x|=0.5yE、

2、已知关于x的方程ax+b=c的解是x=1,则=

3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!

作业设计也一改从前,千篇一律,本节课后作业分出了层次,也体现了趣味性和挑战性,激发了学生的求知欲!

七、课后反思:

数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的`说教有效得多。

《解一元一次方程》教案 篇六

解一元一次方程

【教学任务分析】教学目标知识技能

1.用一元一次方程解决“数字型”问题;

2.能熟练的通过合并,移项解一元一次方程;

3.进一步学习、体会用一元一次方程解决实际问题。

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。

重点建立一元一次方程解决实际问题的模型。

难点探索并发现实际问题中的等量关系,并列出方程。

【教学环节安排】

环节教学问题设计教学活动设计

入牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。

学生:独立完成,根据讲评核对、自我评价,了解掌握情况。

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

【分析】1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍。

2.怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的和是-1701列出方程。

③解略

变式:你能设其它的数列方程解出吗?试一试。比比较哪种设法简单。

探究二:百分比问题(习题3.2第8题)

【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。这个乡去年农民人均收入是多少元?

【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析。

2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题。

学生:观察、讨论、阐述自己的发现,并互相交流。

根据分析列出方程并解出,求出所求三个数。

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决。

变换设法,列出方程,比较优劣、阐述发现和体会。

教师:出示题目,引导学生,让学生尝试分析,多鼓励。

学生:根据引导思考、回答、阐述自己的观点和认识。

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础。

通过(3)题理解连续数的表示法,并感受怎么表示最简单。

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式。

教师:结合完成题目,汇总讲解,重点在于解法。

成果

展示1.通过本节所学你有哪些收获?

2.谈谈你掌握的。方法和学习的感受,以及你对应用方程解决问题的体会。学生自我阐述,教师评价鼓励、补充总结。

补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).

A.69B.54C.27D.40

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题。

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高。

根据学生完成情况灵活设置问题。

作业

设计作业:

必做题:课本4、5、第94页6题。

选做题:同步探究。教师布置作业,并提出要求。

学生课下独立完成,延续课堂。

授课教师:

20xx年10月31日

初中七年级上册数学《解一元一次方程》教案优质 篇七

教学目标

知识与能力:掌握去括号法则,运用法则,能按要求正确去括号。

过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性。

教学重难点

重点:去括号法则,准确应用法则将整式化简。

难点:括号前面是“-”号,去括号时括号内各项都变号。

教学过程

一、复习旧知

1. 化简

-(+5) +(+5) -(-7) +(-7)

2. 去括号

① -(3- 7) ② +(3- 7)

二、探索新知

想一想:根据分配律,你能为下面的式子去括号吗?

①+(- a+c) ② - (- a+c)

③ +(a-b+c) ④ -(a-b+c)

观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?

去括号法则:

括号前是“+”号的,把括号和它前面的“+”号去掉,

括号里各项都不改变符号;

括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,

括号里各项都改变符号。

顺口溜:

去括号,看符号;是“+”号,不变号;是“-”号,全变号。

三、巩固练习:

(1)去括号:

a+(b-c)= _______ a- (b-c)= ______

a+(- b+c)= _______ a- (- b+c)= ______

(2)判断正误

a-(b+c)=a-b+c ( )

a-(b-c)=a-b-c ( )

2b+(-3a+1)=2b-3a-1 ( )

3a-(3b-c)=3a-3b+c ( )

四、例题学习:为下面的式子去括号

+3(a - b+c) - 3(a - b+c)

五、课堂检测:

去括号:

① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)

六、课堂小结

去括号时应注意的事项:

(1)、去括号时应先判断括号前面是“+”号还是“-”号。

(2)、去括号后,括号内各项符号要么全变号,要么全不变号。

(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。

七、布置作业:

必做题:课本70页习题2.2 第2,3题

选做题:课本70页 习题2.2 第4题

《解一元一次方程》教案 篇八

3.3解一元一次方程(二)(第4课时)

一、教学目标

知识与技能

1、会根据实际问题中的数量关系列方程解决问题。

2、熟练掌握一元一次方程的解法。

过程与方法

培养学生的数学建模能力,以及分析问题解、决问题的能力。

情感态度与价值观

1、通过问题的解决,培养学生解决问题的能力。

2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。

二、重点难点

重点

根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。

难点弄清题意,用列方程解决实际问题。

三、学情分析

学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。

四、教学过程设计

教学

环节问题设计师生活动备注情境创设

讨论交流:按怎样的'解题步骤解方程才最简便?由此你能得到怎样的启发。

创设问题情境,引起学生学习的兴趣。

学生动手解方程

自主探究

问题一:

一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

问题二:

某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?

问题三:

整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。

初中七年级上册数学《解一元一次方程》教案优质 篇九

一、学生起点分析

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

三、教学过程设计

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)复习引入,提出问题

活动内容:

1.复习提问:

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分。

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

用类似的方法计算(2)(-3)+ 2

(3) 3 +(-2)

(4) 4+(-4)

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究。

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

3、从中归纳概括出规律

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

(3)5+(-5); (4) 0+(-2)

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值。

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

活动内容:

1. 口答下列算式的结果

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(5)(+4)+(-4); (6) (-3)+0

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

(3)(-23)+0; (4)45+(-45)

全班学生书面练习,四位学生板演,教师对学生板演进行讲评。

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

活动内容:师生共同总结。

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

七年级数学《一元一次方程》教案 篇十

学习目标

1. 了解一元一次方程及其相关概念

2. 掌握等式的性质,理解掌握移项法则

3. 会用等式的性质解一元一 次昂成(数字系数),掌握解一元一次方程的基本方法

4. 能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方 程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力

5. 初步学会用方程的思想思考问 题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结 现实情境中的实际问题。

重点

难点 重点:解方程、用方程解决 实际问题

难点:用方程解决 实际问题

教学流程

师生活动 时间 复备标注

一、结合课本112页知识结构图和回顾与思 考中的问题,复习本章的知识点,形成框架,巩固重点知识

二、典 例回顾

1.一元一次方程的概念:

例1.试判断下列方程是否为一元一次方程。

(1).x=5 (2). x2+3x=2 (3) .2x+3y=5

2.一元一次方程的解(根 ):

判断下列x值是否为方程 3x-5=6x+4 的解。

(1).x =3 (2)x=3

3.解一 元一次方程的基本 思路 :

4.解决问题的基本步骤

例5:整理一批 图书,由一个人做要40小 时。现在计划由一部分人先做4小 时,再增加2人和他们一起做8小时,完成这项工作。假设这些人 的工作效率下共同, 具体 应先安排多少人工作?

解:设先安排x人工作4小时。根据两段 工作量之和应是总工作量,由此,列方程:

去分母,得 4x+8(x+2) =40

去括号,得 4x+8x+16=40

移项及合并,得12x=24

系数化为1, 得x=2

答:应先安排2名工人工作4小 时。

注意:工作量=人均效率人数时间

本题的关键是 要人均效率与人数和时 间之间的数量关系。

三、基础训练:课本第113页第1.2.3题。

四 、综合训练:课本113页至114页4.5.6.7.8

五、达标训练:3.7

学生作业

课件出示 问题明确 知识要点

学生练习基础上,教师点拨

《解一元一次方程》教案 第十一篇

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的'工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

元一次方程 第十二篇

4.3用一元一次方程解决问题(6)

教学目标:

1.让学生了解打折销售问题中的有关概念,能分析并理清其中的相等关系,并能借助于柱状示意图列一元一次方程解决相关问题;

2.教会学生掌握用一元一次方程解决有关打折销售问题的一般方法;

3.带领学生体会生活中的数学问题,加深对数学知识的应用。

教学重点:找准等量关系,用含有未知数的代数式准确表示各个未知量。

教学难点:找准等量关系,用含有未知数的代数式准确表示各个未知量。

教学过程:

一、课前准备:

1.预习课本p111的问题6。

2.完成关于打折销售的调查报告。

二、课堂学习:

进价

(成本价)标价

(定价)折扣数售价利润

(一)活动一:探究新知

1.填一填 www.shancaoxiang.com :(结合课件)

2.做一做:

(1)一件进价100元的商品,标价为150元,按标价的八折出售,则售价为______元,利润是 元。

(2)一件衬衣成本价为200元,若商家盈利10%(售价比成本价高10%),则这件衬衣的利润是 元,售价为______元。

(3)根据下表中的已知条件将表格补充完整

进价

(成本价)标价

(定价)折扣数售价利润

1000元

750元

200元

(4)一双运动鞋的成本价为300元的商品,按标价的75折出售。

若设标价为x元,请在柱状图示意上方写出各个量。

(二)活动二: 例题评析

一件夹克衫先按成本提高50%标价,再以8折出售,结果获利28元,这件夹克衫的成本是多少元?

分析:1. 获利28元是什么意思?获利28元怎么得来的?

2.设商品的成本是x元,在柱状示意图上方写出各个量。

3.按照解题格式和步骤书写解题过程。

(三)活动三:巩固练习

1.商店将进价为600元的商品按标价的7折销售,仍可获利240元利润,问商品标价为多少元?

2.某种家具的定价为1320元,如果按9折出售,那么售价比进货价高10%,求这种家具的进货价。

(四)活动四:思维拓展

1. 小明在做作业时,不小心将应用题中的一个数字污染了看不清楚,被污染的应用题是“一件商品先按进价提高60%标价,后来由于该商品积压,商家再以 折出售,结果盈利420元,该商品的进价是多少?”

(1)老师告诉小明这个被污染了数在7-9之间。如果你是小明,请你取一个数,求出该商品的进价。(要求:设未知数列方程,不必求解)

(2)老师告诉小明商品的进价是1500元,要求小明求出这个被污染了的数。如果你是小明,请你求出这个被污染了的数。(要求:设未知数列方程,不必求解)

2. 结合今天的学习内容,小组内合作编写一道关于打折销售的应用题,并列方程解应用题。

三、课堂小结:本节课我的收获是

四、检测反馈:

1. 某商品的进货价是100元,标价为150元,后来按八折出售,则其售价为______元,利润为 元。2.一件商品按成本提高20%后标价,然后打9折出售,售价是270元,这种商品的成本是多少?

若这种商品的成本是x元,则可列方程 。

3.某种商品因换季准备打折出售,如果按标价的七五折出售将赔25元,而按标价的九折出售将赚20元,那么商品的标价是多少元?若设商品的标价是x元,则可列方程 。

4.商店老板对某种商品作调价,按原标价的八折出售,此时该商品仍可获利20%(售价比进价高20%),

已知该商品的进价为1000元,求该商品的原标价。

书山有路勤为径,学海无涯苦作舟。快回答为大家整理的12篇一元一次方程教学反思到这里就结束了,希望可以帮助您更好的写作一元一次方程。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。