1. 主页 > 知识大全 >

数学六年级下册倒数的认识教案【优秀11篇】

作为一位不辞辛劳的人民教师,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?以下这11篇数学六年级下册倒数的认识教案是来自于快回答的六年级下册数学的范文范本,欢迎参考阅读。

六年级下册数学学期教学计划 篇一

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张。,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

5÷4=1……1 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

7÷5=1…… 2 1+2=3?

7÷5=1…… 2 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么 10÷5=2 正好分完, 至少数是商

(6)好再增加一支铅笔,你来说

11÷5=2……1 2+1=3 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把。)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

(1、367人相当于鸽子,365、或366天相当于鸽巢。

? 2、49人相当于鸽子,12个月相当于鸽巢。)

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复。所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

下 课!

板书设计:

鸽? 巢? 问? 题

物体? 抽屉 至少数

4? ÷ 3 =? 1……1 1+1=2?

5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

7? ? ÷ 5? =? 1……2? ? ? 1+1=2

9 ÷ 5? =? 1……4? 1+1=2

11 ? ÷? 5? =? 2……1 ? 2+1=3

28 ÷ 5? =? 5……3? 5+1=6

100 ? ÷ 30? =? 3……1 3+1=4?

m ÷ n = 商……余数? 商+1

人教版数学六年级下册教案 篇二

教学目标:

1.在课前实际调研的基础上,交流常用的理财方式及其利弊,了解各种理财方式在生活中的应用价值。

2.在探究各种储蓄方式收益情况的活动中,体会数学知识在解决实际问题中的实际应用

的价值。

3.在分析、比较各数据的活动中,培养数据分析的能力,推理辨析,反思调整的意识。

4.在课前活动及课上探究的活动中,感受数学源自于生活,数学在生活中的广泛应用。

教学重点:

1.初步了解多种理财的基本方式,感受理财方式的优化。

2.在解决问题、辨析策略的过程中,体会数学在解决实际问题中的价值。

教学难点:能在自觉应用数学知识解决问题的过程中,提高分析数据、推理辨析、反思调整的意识。

学科德育、习惯培养、学科教学改进建议:在活动中培养学生解决问题策略的多样化以及分析数据、推理辨析、反思调整的意识。

教具准备:教学课件、根据学生的调查情况制作的各种图表。

教学过程:

一、谈话引入,组织交流

(一)以压岁钱为话题,引入要研究的问题

1.谈话引入:同学们,每到过新年的时候你们最高兴的一件事是什么?

师:对!得到压岁钱,这是我国古代留下来的一种民族习俗,其寓意是祝收到压岁钱的人在新的一年里顺利、健康,平安。

2.提问:那你们得到的压岁钱一般又是怎么处理的呢?

3.小结:看来我们大多数同学都是把压岁钱进行合理的储蓄,使其获得更大的收益,这就是基本的理财意识。(板书课题:理财)

4.交流汇报:咱班理财意识强的同学,走访了银行,采访了银行的专业人士,了解到了一些相关的信息想与我们大家分享。(课件上出现实践活动的照片)

(二)借助课前调研,了解理财知识

下面有请赵新莹同学与我们进行知识分享。

学生用自己制作的ppt介绍自己知道的理财知识,并且进行简单的说明。

二、结合调研结果,提出研究的问题

1.谈话过渡:看来,将钱放入银行进行合理储蓄的方式是比较可靠的,那如果让你用这种方法来掌管你的压岁钱,你最关心什么?

2.要想帮助大家解决这个问题你有什么需求呢?

3.师:为了满足大家的需求,老师给大家准备了一份学习资料,大家认真阅读,看看能找到哪些信息帮我们解决问题?(拿出学习资料1--浦发银行储蓄知识单)

预设:

(1)20xx年浦发银行定期存款利率

(2)复利计息方式:每次储蓄后将本息都取出来再进行储蓄。

第二年的本金=第一年的本金+第一年的利息

三、小组合作计算,尝试解决问题

(一)组织讨论,探究存储方式

1.通过阅读学习资料你都知道哪些信息?(学生汇报)现在能解决刚才的问题了吗?怎么还不能呢?

预设:

(1)还不知道本金呢?

(2)存多长时间呢?

2.学生思考存储方式,猜想验证收益最高的方式

(1)那存三年,都可以怎么存呢?

出示要求:先独立思考,然后将你想到的存储方式写在纸上,并贴在黑板上。

(2)在这几种存储方式中,你们猜猜哪种存储方式的收益会最大呢?说说你的想法。

(3)是不是像大家所猜想的这样呢?我们需要--验证(算一算)

(二)小组合作,借助计算器进行计算,并发现规律。

1.小组合作,自由计算3年后的本息,验证猜测是否正确。

(1)1+1+1;(2)1+2;(3)2+1(4)3;

2.学生交流、汇报

3.发现规律

(1)提问:通过计算、交流你有什么发现或疑惑吗?

(2)交流发现

预设1:直接存三年收益最大,1年1年1年的存收益最小。

预设2:1年+2年和2年+1年的收益是一样的。

4.讨论:在刚才自己模拟的理财过程中,你获得了哪些经验?(学生随意表达自己的想法)

四、拓展知识,发散思维

1.提出问题

如果这6000元钱我们想作为上大学的一笔基金,你们觉得这回又该存几年呢?(六年)是啊,存六年,怎样存收益会最大呢?说说你的想法?

2.学生独立思考后,交流想法。

师:是不是像大家所说的这样呢?咱们课下可以试着来验证一下。

3.小结:上完这节课后,相信我们每位同学都成为了是一名小小的理财家。(板书课题)课前,通过调研发现还有众多的理财方式,但无论选择哪一种理财方式,老师都有一句话送给大家----投资有风险,入市需谨慎!

五、板书设计

小小理财家

1+1+1 1+2 1+3 2+1

利率

存期

本金

六年级下册数学学期教学计划 篇三

一 、学生情况分析:

上学期期末参加考试人数10人,本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。

二、教材分析:

教学任务:本册教材内容包括:负数,比例,圆柱、圆锥和球,简单的统计,整理和复习等内容。

本册教材的教学是让学生:

1.负数的意义,会用负数表示日常生活中的问题。

2.理解比例的意义和性质,会解比例,理解正比例和反比例的意义,能够判断两种量成正比例或反比例,会用比例知识解决简单的问题;能给出的有正比例关系的数据在有坐标系的方格纸上画图,并能量的值估计另量的值。

3.会看比例尺,能方格纸等按的比例将简单图形放大或缩小。

4.认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。

5.能从统计图表提取统计信息,解释统计结果,并能的判断或简单的预测;体会数据产生误导。

6.经历从生活中问题、问题、解决问题的过程,体会数学在日常生活中的作用,综合运用数学知识解决问题的能力。

7.经历对"抽屉原理"的探究过程,"抽屉原理",会用"抽屉原理"解决简单的问题,发展分析、推理的能力。

8.系统的整理和复习,对小学阶段所学的数学知识的理解和,的、灵活的计算能力,发展思维能力和空间观念,综合运用所学数学知识解决问题的能力。

9.体会学习数学的乐趣,学习数学的兴趣,学好数学的信心。

10.养成作业、书写整洁的习惯。

教学要求:

1、初步认识负数,能正确地读、写正数和负数;使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

2、掌握圆柱、圆锥的特征,掌握几何体体积的计算公式,学会正确计算它们的体积。

3、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。

4、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。

5、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。

教学重点:圆柱、圆锥 ,比例的应用,小学阶段主要数学知识的复习。

三、教学措施:

1、创设愉悦的教学情境,激发学生学习的兴趣。提倡学法的多样性,关注学生的个人体验。

2、在集体备课基础上,还应同年级老师交换听课,反思,真正领会教学设计意图,驾御课堂的能力。教师应转变观念,采用"激励性、自主性、性"教学策略,以问题为线索,恰当运用教材、媒体、现实材料、难点,变多讲多练,为精讲精练,真正师生互动、生生互动,从而调动学生学习,教与学的效益。

3、在教学中,为学生提供创造参与教学活动的情境,努力构建"和谐有效"课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。

4、 在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。

5、 在教学中要重视学生的学法指导,培养学生的迁移、类推能力。

6、 抓好育尖补差工作,利用课余时间为他们补课。

四、课时安排

六年级下学期数学教学安排了60课时的教学内容,各教学内容教学课时大致安排如下,教师教学时可以本班情况灵活:

六年级数学下册教案 篇四

教学目标:

1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

课前准备:

教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

教学设计:

一、创设情境导入

1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

二、体验探究

1、认识圆柱

拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

(1)学生观察,并用手摸表面、滚一滚。

(2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

预设;

2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

(3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

6、圆柱的侧面积。

(1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

预设:长方形、正方形

(3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

(4)下面请同学们认真观察,仔细的想一想

我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

①同桌互相讨论一下。

②集体交流。(指名说,教师随即板书)

长方形的面积长宽

圆柱的侧面积底面周长高

(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

三、实践应用

1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

2、29页1、2题

四、课堂小结。

通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

五、拓展延伸

在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

六年级数学下册教案 篇五

复习目标:

1.使学生学会用列表的方法解决有关问题,提高学生分析能力和解决问题的能力。

2.形成一些解决问题的策略,发展学生的实践能力。

复习过程:

一回顾与交流。

教学例6。

六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。

请问哪两位班长是同班的?

1、 通过读题你能判断出哪两位班长是同班的?

学生很难做出判断。

2、 可以用什么方法把题意给整理、表示出来?

教师引导学生用列表的方法把题意表示出来。

如:用“∕”表示到会,用“○”表示没到会。

A B C D E F

第一次 / / / ○ ○ ○

第二次 ○ / ○ / /

第三次 / ○ ○ ○ / /

3、引导提问。

(1)从第一次到会的情况,你可以看出什么?可以看出:A只可能和D、E或F同班。

(2)从第二次到会的情况,你可以判断出什么?可以判断:A只可能和D或E同班。

(3)从第三次到会的情况,你可以判断出什么?可以判断:A只可能和D同班。

4、那么B和C分别与谁同班。

从第一次到会的情况可以看出,B只可能和E或F同班。

所以,C只可能与E同班。

二巩固练习。

完成课文练习十八第5~7题。

六年级下册数学学期教学计划 篇六

知识点

1、认识整千数 (记忆:10个一千是一万)

2、读数和写数 (读数时写汉字 写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

5、最大的几位数和最小的几位数

最大的一位数是9,

最小的一位数是0.

最大的二位数是99,

最小的二位数是10

最大的三位数是999,

最小的三位数是100

最大的四位数是9999,

最小的四位数是1000

最大的五位数是99999,

最小的五位数是10000

最大的三位数比最小的四位数小1。

6、被减数是三位数的连续退位减法的运算步骤:

① 列竖式时相同数位一定要对齐;

② 减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

7、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

8、公式:

被减数=减数+差

和=加数+另一个加数

减数=被减数-差

加数=和-另一个加数

差=被减数-减数文

人教版六年级数学下册全册教案 篇七

教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、使学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识

教学重点:圆的对称轴。

教学难点:画对称轴的方法。

教具准备:多媒体课件、直尺。

教学过程:

一、创设情境,初步感知(课件出示)

1、举例说出轴对称的物体。

如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、教学认识圆的对称轴

1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、课堂提高。

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?

长方形 等边三角形 等腰三角形 正方形 圆 环形

四、当堂测评

练习十四弟5、6、7题

学生独立完成,教师巡回查看,帮助学困生理解每道题。

小组内讲评,充分发挥组长的作用,以“兵强兵、兵练兵’.

五、课堂总结

今天我们学习了哪些知识?学生畅所欲言。

设计意图

本堂课是对圆的初步认识,概念较多,也可会较乏味。为了避免学生学得枯燥、没兴趣,我采用课件与动手操作相结合的方式进行教学,以分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。在教学“画圆”时,我不讲授而是让学生自己来讲述、演示画圆的步骤。当堂测评检验学生的学习效果,同时让优秀的学生带动学困生,共同进步。

人教版六年级数学下册全册教案 篇八

教学目标:

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:如何确定每一条跑道的起跑点。

教学难点:确定每一条跑道的起跑点。

教具准备:多媒体课件

教学过程:

一、 提出研究问题。(出示运动场运动员图片)

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

2、各条跑道的起跑线应该向差多少米?

二、 收集数据

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

三、 分析数据

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在\www.kuaihuida.com\一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、 得出结论

1、看书p76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)

五、 课外延伸

200m跑道如何确定起跑线?

设计意图

此节知识虽不是很重要,但我独列出来进行教学,主要原因有;

1、 此节知识的综合性很强。

2、 密切联系生活,能提高学生的应用能力。

3、 培养学生收集数据的良好习惯,重视科学性。

小学六年级数学下册教案 篇九

课前准备

教师准备 PPT课件

教学过程

⊙谈话导入

师:看下面的字母,你知道它们分别是什么意思吗?

SOS EMS m2

(SOS:求助信号;EMS:中国邮政快递;m2:平方米)

字母在生活中随处可见,这说明它很重要。今天我们就来进一步巩固用字母表示数及解方程等知识。(板书课题:用字母表示数、解方程)

⊙回顾与整理

1.用字母表示数。

(1)用字母表示数的作用和意义。

用字母可以简明地表示数、数量关系、运算定律和计算公式,为研究和解决问题带来了很多方便。

(2)我们曾经学过哪些用字母表示数的知识?

整理:

①用字母表示数的简写。

②用字母表示数量关系。

③用字母表示运算定律。

④用字母表示计算公式。

(3)常见的用字母表示的数量关系有哪些?

预设

生1:路程用s表示,速度用v表示,时间用t表示,三者之间的。关系如下:

s=vt v= t=

生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系如下:

a=bc b= c=

(4)常用的运算定律有哪些?

预设

生1:加法交换律:a+b=b+a

生2:加法结合律:(a+b)+c=a+(b+c)

生3:乘法交换律:a×b=b×a

生4:乘法结合律:a×b×c=a×(b×c)

生5:乘法分配律:a×(b+c)=a×b+a×c

(5)常见的用字母表示的计算公式有哪些?

预设

生1:长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。

C=2(a+b) S=ab

生2:正方形的边长用a表示,周长用C表示,面积用S表示。

C=4a S=a2

生3:平行四边形的底用a表示,高用h表示,面积用S表示。

S=ah

生4:三角形的底用a表示,高用h表示,面积用S表示。

S=

六年级数学下册教案 篇十

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:V=Sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题

六年级下册数学教案 第十一篇

教学内容:

苏教版义务教育教科书《数学》六年级上册75页例1、练一练,第76页练习十二第1~5题。

教学目标:

1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。

2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。

3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。

教学重点:

分数四则混合运算的运算顺序。

教学难点:

运用运算律和运算性质进行简便计算。

教学准备:

多媒体课件。

教学过程:

一、复习引入

做练习十二第1题,直接写出得数。

集体交流,选择几题让学生说说算法。

二、创设情境,探究新知。

1、出示教科书第75页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?

要求学生自主列出综合算式,并尽可能列出不同的综合算式。

2、集体交流。教师根据学生的回答板书算式。

2/5×18+3/5×18(2/5+3/5)×18

追问:列式时你是怎么想的?

3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)

三、教学分数四则混合运算的运算顺序。

1、谈话:根据以上计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?

你会计算上面这两道式题吗?

学生分别计算,并指名板演。

2、提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?

3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。

4、做“练一练”第1题。

提问:这两题的运算顺序是怎样的?同桌相互说一说。

学生独立计算,指名板演。

集体校对,共同评议。

提问:在进行分数四则混合运算时,你认为要注决些什么?

指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。

四、教学把整数的运算律推广到分数。

1、引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?

通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。

2、做“练一练”第2题。

先让学生独立计算,指名板演。

集体交流,说说哪里用了简便算法,分别是怎样想的。

小结:简便运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。

五、巩固练习。

做练习十二第3题。

让学生独立练习,指名四人板演。

交流:每道题是哪里用了简便计算,依据是什么?

六、全课小结。

这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?

七、作业布置

补充习题相对应页。

读书破万卷,下笔如有神。以上11篇数学六年级下册倒数的认识教案就是快回答小编为您分享的六年级下册数学的范文模板,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。